955 resultados para intelligent agents
Resumo:
The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
Abstract—It is easy to create new combinatorial games but more difficult to predict those that will interest human players. We examine the concept of game quality, its automated measurement through self-play simulations, and its use in the evolutionary search for new high-quality games. A general game system called Ludi is described and experiments conducted to test its ability to synthesize and evaluate new games. Results demonstrate the validity of the approach through the automated creation of novel, interesting, and publishable games. Index Terms—Aesthetics, artificial intelligence (AI), combinatorial game, evolutionary search, game design.
Resumo:
This paper describes automation of the digging cycle of a mining rope shovel which considers autonomous dipper (bucket) filling and determining methods to detect when to disengage the dipper from the bank. Novel techniques to overcome dipper stall and the online estimation of dipper "fullness" are described with in-field experimental results of laser DTM generation, machine automation and digging using a 1/7th scale model rope shovel presented. © 2006 Wiley Periodicals, Inc.
Resumo:
Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.
Resumo:
RatSLAM is a biologically-inspired visual SLAM and navigation system that has been shown to be effective indoors and outdoors on real robots. The spatial representation at the core of RatSLAM, the experience map, forms in a distributed fashion as the robot learns the environment. The activity in RatSLAM’s experience map possesses some geometric properties, but still does not represent the world in a human readable form. A new system, dubbed RatChat, has been introduced to enable meaningful communication with the robot. The intention is to use the “language games” paradigm to build spatial concepts that can be used as the basis for communication. This paper describes the first step in the language game experiments, showing the potential for meaningful categorization of the spatial representations in RatSLAM.
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.
Resumo:
This paper details the design of an autonomous helicopter control system using a low cost sensor suite. Control is maintained using simple nested PID loops. Aircraft attitude, velocity, and height is estimated using an in-house designed IMU and vision system. Information is combined using complimentary filtering. The aircraft is shown to be stabilised and responding to high level demands on all axes, including heading, height, lateral velocity and longitudinal velocity.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.