927 resultados para inorganic non-metallic materials
Resumo:
Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.
Resumo:
In this work, the chemical structure, the microstructure and the surface morphology of two non-ferrous materials used in dental implants (Ti-6Al-4V and Co-Cr-Mo) were studied. This was done by chemical analysis, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and strength measurements (HV). Metallographic studies reveal that titanium alloy surface present a fine granular binary phase structure, while cobalt alloy present cast dendrite structures with an intense precipitation of carbides. To correlate the macro and microstructure with the mechanical behavior of the material, microhardness measurements were performed. Using the Vickers hardening method, the Ti-6Al-4V alloy yielded strength mean values smaller than the Co-Cr-Mo alloy. Their values are associated to the chemical composition and to the microstructural distribution of these materials. The Ti-6Al-4V alloy presents hardness similar to dental enamel, which suggests better performance as dental implant.
Resumo:
This paper describes the drawing, construction and optimization of a device, which can be used to obtain single crystals of different metallic materials with melting point from 550 to 1050°C. Components of ease obtaining and of low cost were used. The device was based on the modified Bridgman technique and it was used to obtain single crystals of copper-based alloys. The temperature axial profiles and a difference less then 1% in the temperature between the wall and the center of the ceramic tube in the critical region for obtaining single crystals of good quality indicated that the oven presents a good thermal stability. Single crystals of CuZnAl and CuAlAg alloys of good quality were growth and characterized using optical microscopy and Laüe X-ray back reflection.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC