274 resultados para halo—phreatophytic meadow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and -0.77 µmol/m**2/s in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and population parameters. In a full factorial field experiment, burial level (5-20cm) and burial duration (4-16 weeks) were manipulated. Negative effects were visible even at the lowest burial level (5 cm) and shortest duration (4 weeks), with increasing effects over time and burial level. Buried seagrasses showed higher shoot mortality, delayed growth and flowering and lower carbohydrate storage. The observed effects will likely have an impact on next year's survival of buried plants. Our results have implications for the management of this important coastal plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short-term experimental manipulations, with few studies of long-term ambient change. We investigated changes in above- and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980-1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short-term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 18,400 km**2 of seagrass habitat has been mapped within the coastal waters (<15 m) of Queensland (Australia) between November 1984 and June 2010. The total seagrass meadow distribution was calculated by merging maps from 115 separate mapping surveys (varying locations and dates). Due to tropical seagrass dynamism, meadow distribution can change seasonally and between years, and as a consequence, the composite represents the maximum area of seabed where seagrass has been observed/recorded. Mapping survey methodologies followed standardised global seagrass research methods (McKenzie et al. 2001) where the presence of seagrass was determined from in situ visual assessment of the seabed by either divers or drop cameras at GPS marked positions. Seagrass meadow boundaries were determined based on the positions of survey sites and the presence of seagrass, coupled with depth contours and remote sensing (e.g. aerial photography) where available. The merged meadow boundary accuracy was dependent on the original survey maps and varied from 10-100 m. The resulting composite seagrass distribution was saved as an ArcMap polygon shapefile, and projected to Geocentric Datum of Australia GDA94.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species; with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study we use a hierarchical sampling design to determine levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine-spatial scales (< 1 m) levels of genotypic diversity are relatively low (R (Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10's m) and meadow location (km) scale we found higher levels of genotypic diversity (R (sites) = 0.79 ± 0.04 SE; R (Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproduction are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localised rhizome extension, although the sharing of a limited number of genotypes over the scale of 10's of metres could also result from the localised dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape-scale implies that recovery at meadow-scale losses is likely to be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (omega Ar)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range omega Ar. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min omega Ar, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range omega Ar within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, omega Ar and carbonate deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brown algae Fucus serratus is one of the major meadow forming algae of the Western Baltic Sea nearshore ecosystem. At the end of summer, those meadows are exposed to local upwelling suddenly increasing the pCO2 and DIC up to 2500 µatm and 2250 µmol/kg resp., for period of days to weeks. This study investigates the growth response of summer's vegetative Fucus serratus to elevated pCO2 (1350 and 4080 µatm) during a 40 days laboratory incubation. After 10 days, increases of growth rates of 20 % and 47 % of the control were observed in the 1350 and 4080 µatm pCO2 treatments respectively. Beyond 20 days, the growth rates collapsed in all treatments due to nutrients shortage, as demonstrated by high C:N ratios (95:1) and low N tissue content (0.04 % of dry weight). The collapse occurs faster at higher pCO2. On day 30, growth rates were reduced by 40 % and 100 % relative to the control at 1350 and 4080 µatm respectively. These results are consistent with a fertilizing effect of elevated pCO2 on Fucus serratus presumably linked to the transition from active HCO3- to passive CO2(aq) uptake. This positive effect is limited by nutrients resources, low seawater dissolved inorganic N and P and shortage of the nutrients reserves accumulated over the previous autumn and winter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. 2. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N/m**2/d and 0.24 g P m**2/d). 3. Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. 4. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the lipid distributions (n-alkanes, n-alkan-2-ones, n-alkanoic acids), total organic carbon (TOC), total nitrogen (TN), Ca/Mg and ash content in Las Conchas mire, a 3.2 m deep bryophyte-dominated mire in Northern Spain covering 8000 cal yr BP. Bog conditions developed in the bottom 20 cm of the profile, and good preservation of organic matter (OM) was inferred from n-alkanoic acid distribution, with the exception of the uppermost 20 cm (last ca. 200 yr). Microbial synthesis of long chain saturated fatty acids from primary OM likely produced a dominance of short chain n-alkanoic acids with a bimodal distribution, as well as the lack of correspondence between the n-alkane and n-alkanoic acid profiles in the upper 20 cm. This was accompanied by an increase in ash content, a decrease in TOC and variation in n-alkane ratios, thereby suggesting significant changes in the mire, namely drainage and transformation to a meadow, in the last ca. 200 yr. The distribution of n-alkan-2-ones indicated an increase in bacterial source from the bottom of the record to 94 cm, whereas their distribution in the upper part could be attributed mainly to plant input and/or the microbial oxidation of n-alkanes. The different n-alkane proxies showed variations, which we interpreted in terms of changes in vegetation (Sphagnum vs. non-Sphagnum dominated phases) during the last 8000 cal yr BP. C23 was the most abundant homolog throughout most of the record, thereby suggesting dominant humid conditions alternating with short drier phases. However, such humid conditions were not linked to paleoclimatic variation but rather to geomorphological characteristics: Las Conchas mire, at the base of the Cuera Range, receives continuous runoff—even during drier periods—which is not necessarily accompanied by additional mineral input to peat, producing the development of Sphagnum moss typical of waterlogged ecotopes and damp habitats. Thus, although geochemical proxies indicated an ombrotrophic regime in the mire, geomorphological characteristics may make a considerable contribution to environmental conditions.