924 resultados para error model
Resumo:
GC-MS data on veterinary drug residues in bovine urine are used for controlling the illegal practice of fattening cattle. According to current detection criteria, peak patterns of preferably four ions should agree within 10 or 20% from a corresponding standard pattern. These criteria are rigid, rather arbitrary and do not match daily practice. A new model, based on multivariate modeling of log peak abundance ratios, provides a theoretical basis for the identification of analytes and optimizes the balance between the avoidance of false positives and false negatives. The performance of the model is demonstrated on data provided by five laboratories, each supplying GC-MS measurements on the detection of clenbuterol, dienestrol and 19 beta-nortestosterone in urine. The proposed model shows a better performance than confirmation by using the current criteria and provides a statistical basis for inspection criteria in terms of error probabilities.
Resumo:
The development of accurate structural/thermal numerical models of complex systems, such as aircraft fuselage barrels, is often limited and determined by the smallest scales that need to be modelled. The development of reduced order models of the smallest scales and consequently their integration with higher level models can be a way to minimise the bottle neck present, while still having efficient, robust and accurate numerical models. In this paper a methodology on how to develop compact thermal fluid models (CTFMs) for compartments where mixed convection regimes are present is demonstrated. Detailed numerical simulations (CFD) have been developed for an aircraft crown compartment and validated against experimental data obtained from a 1:1 scale compartment rig. The crown compartment is defined as the confined area between the upper fuselage and the passenger cabin in a single aisle commercial aircraft. CFD results were utilised to extract average quantities (temperature and heat fluxes) and characteristic parameters (heat transfer coefficients) to generate CTFMs. The CTFMs have then been compared with the results obtained from the detailed models showing average errors for temperature predictions lower than 5%. This error can be deemed acceptable when compared to the nominal experimental error associated with the thermocouple measurements.
The CTFMs methodology developed allows to generate accurate reduced order models where accuracy is restricted to the region of Boundary Conditions applied. This limitation arises from the sensitivity of the internal flow structures to the applied boundary condition set. CTFMs thus generated can be then integrated in complex numerical modelling of whole fuselage sections.
Further steps in the development of an exhaustive methodology would be the implementation of a logic ruled based approach to extract directly from the CFD simulations numbers and positions of the nodes for the CTFM.
Resumo:
In this article the multibody simulation software package MADYMO for analysing and optimizing occupant safety design was used to model crash tests for Normal Containment barriers in accordance with EN 1317. The verification process was carried out by simulating a TB31 and a TB32 crash test performed on vertical portable concrete barriers and by comparing the numerical results to those obtained experimentally. The same modelling approach was applied to both tests to evaluate the predictive capacity of the modelling at two different impact speeds. A sensitivity analysis of the vehicle stiffness was also carried out. The capacity to predict all of the principal EN1317 criteria was assessed for the first time: the acceleration severity index, the theoretical head impact velocity, the barrier working width and the vehicle exit box. Results showed a maximum error of 6% for the acceleration severity index and 21% for theoretical head impact velocity for the numerical simulation in comparison to the recorded data. The exit box position was predicted with a maximum error of 4°. For the working width, a large percentage difference was observed for test TB31 due to the small absolute value of the barrier deflection but the results were well within the limit value from the standard for both tests. The sensitivity analysis showed the robustness of the modelling with respect to contact stiffness increase of ±20% and ±40%. This is the first multibody model of portable concrete barriers that can reproduce not only the acceleration severity index but all the test criteria of EN 1317 and is therefore a valuable tool for new product development and for injury biomechanics research.
Resumo:
This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.
Resumo:
Molecular communication is set to play an important role in the design of complex biological and chemical systems. An important class of molecular communication systems is based on the timing channel, where information is encoded in the delay of the transmitted molecule - a synchronous approach. At present, a widely used modeling assumption is the perfect synchronization between the transmitter and the receiver. Unfortunately, this assumption is unlikely to hold in most practical molecular systems. To remedy this, we introduce a clock into the model - leading to the molecular timing channel with synchronization error. To quantify the behavior of this new system, we derive upper and lower bounds on the variance-constrained capacity, which we view as the step between the mean-delay and the peak-delay constrained capacity. By numerically evaluating our bounds, we obtain a key practical insight: the drift velocity of the clock links does not need to be significantly larger than the drift velocity of the information link, in order to achieve the variance-constrained capacity with perfect synchronization.
Resumo:
A parametric regression model for right-censored data with a log-linear median regression function and a transformation in both response and regression parts, named parametric Transform-Both-Sides (TBS) model, is presented. The TBS model has a parameter that handles data asymmetry while allowing various different distributions for the error, as long as they are unimodal symmetric distributions centered at zero. The discussion is focused on the estimation procedure with five important error distributions (normal, double-exponential, Student's t, Cauchy and logistic) and presents properties, associated functions (that is, survival and hazard functions) and estimation methods based on maximum likelihood and on the Bayesian paradigm. These procedures are implemented in TBSSurvival, an open-source fully documented R package. The use of the package is illustrated and the performance of the model is analyzed using both simulated and real data sets.
Resumo:
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of 'gold standard' tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies.
Resumo:
A new battery modelling method is presented based on the simulation error minimization criterion rather than the conventional prediction error criterion. A new integrated optimization method to optimize the model parameters is proposed. This new method is validated on a set of Li ion battery test data, and the results confirm the advantages of the proposed method in terms of the model generalization performance and long-term prediction accuracy.
Resumo:
PURPOSE: To model the possible impact of using average-power intraocular lenses (IOLs) and evaluate the postoperative refractive error in patients having cataract surgery in rural China.SETTING: Rural Guangdong, China.METHODS: Patients having cataract surgery by local surgeons were examined and visual function was assessed 10 to 14 months after surgery. Subjective refraction at near and distance was performed bilaterally by an ophthalmologist. Patients had a target refraction of -0.50 diopter (D) based on ocular biometry.RESULTS: Of the 313 eligible patients, 242 (77%) could be contacted and 176 (74% of contacted patients, 56% overall) were examined. Examined patients had a mean age of 69.4 +/- 10.5 years. Of the 211 operated eyes, 73.2% were within +/-1.0 D of the target refraction after surgery. The best presenting distance vision was in patients within +/-1.0 D of plano and the best presenting near vision, in those with mild myopia (<-1.0 D to > or =2.0 D) (P= .005). However, patients with hyperopia (>+1.0 D) reported significantly better adjusted visual function than those with emmetropia or myopia (<-1.0 D). When the predicted use of an average-power IOL (median +21.5 D) was modeled, predicted visual acuity was significantly reduced (P= .001); however, predicted visual function was not significantly altered (P>.3).CONCLUSIONS: Accurate selection of postoperative refractive error was achieved by local surgeons in this rural area. Based on visual function results, aiming for mild postoperative myopia may not be suitable in this setting. Implanting average-power IOLs significantly reduced postoperative presenting vision, but not visual function.
Resumo:
PURPOSE: To assess the sensitivity and specificity of models predicting myopia onset among ethnically Chinese children. METHODS: Visual acuity, height, weight, biometry (A-scan, keratometry), and refractive error were assessed at baseline and 3 years later using the same equipment and protocol in primary schools in Xiamen (China) and Singapore. A regression model predicting the onset of myopia < -0.75 diopters (D) after 3 years in either eye among Xiamen children was validated with Singapore data. RESULTS: Baseline data were collected from 236 Xiamen children (mean age, 7.82 ± 0.63 years) and from 1979 predominantly Chinese children in Singapore (7.83 ± 0.84 years). Singapore children were significantly taller and heavier, and had more myopia (31.4% vs. 6.36% < -0.75 D in either eye, P < 0.001) and longer mean axial length. Three-year follow-up was available for 80.0% of Xiamen children and 83.1% in Singapore. For Xiamen, the area under the receiver-operator curve (AUC) in a model including ocular biometry, height, weight, and presenting visual acuity was 0.974 (95% confidence interval [CI], 0.945-0.997). In Singapore, the same model achieved sensitivity, specificity, and positive predictive value of 0.844, 0.650, and 0.669, with an AUC of 0.815 (95% CI, 0.791-0.839). CONCLUSIONS: Accuracy in predicting myopia onset based on simple measurements may be sufficient to make targeted early intervention practical in settings such as Singapore with high myopia prevalence. Models based on cohorts with a greater prevalence of high myopia than that in Xiamen could be used to assess accuracy of models predicting more severe forms of myopia.
Resumo:
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.
Resumo:
The Feedback-Related Negativity (FRN) is thought to reflect the dopaminergic prediction error signal from the subcortical areas to the ACC (i.e., a bottom-up signal). Two studies were conducted in order to test a new model of FRN generation, which includes direct modulating influences of medial PFC (i.e., top-down signals) on the ACC at the time of the FRN. Study 1 examined the effects of one’s sense of control (top-down) and of informative cues (bottom-up) on the FRN measures. In Study 2, sense of control and instruction-based (top-down) and probability-based expectations (bottom-up) were manipulated to test the proposed model. The results suggest that any influences of medial PFC on the activity of the ACC that occur in the context of incentive tasks are not direct. The FRN was shown to be sensitive to salient stimulus characteristics. The results of this dissertation partially support the reinforcement learning theory, in that the FRN is a marker for prediction error signal from subcortical areas. However, the pattern of results outlined here suggests that prediction errors are based on salient stimulus characteristics and are not reward specific. A second goal of this dissertation was to examine whether ACC activity, measured through the FRN, is altered in individuals at-risk for problem-gambling behaviour (PG). Individuals in this group were more sensitive to the valence of the outcome in a gambling task compared to not at-risk individuals, suggesting that gambling contexts increase the sensitivity of the reward system to valence of the outcome in individuals at risk for PG. Furthermore, at-risk participants showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes. This contrasts with those not at risk whose FRNs were sensitive to losses. As the results did not replicate previous research showing attenuated FRNs in pathological gamblers, it is likely that the size and time of the FRN does not change gradually with increasing risk of maladaptive behaviour. Instead, changes in ACC activity reflected by the FRN in general can be observed only after behaviour becomes clinically maladaptive or through comparison between different types of gain/loss outcomes.