991 resultados para eigenvalues and eigenfunctions
Resumo:
The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 × 3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4 × 4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n × n PRM is formulated, the elements aij (i < j) of which were randomly chosen from the ratio scale ... ... with equal probability 1/(2M − 1) and a ji is defined as 1/a ij . By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.
Resumo:
Acknowledgments Alexander Dürre was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. David E. Tyler was supported in part by the National Science Foundation grant DMS-1407751. A visit of Daniel Vogel to David E. Tyler was supported by a travel grant from the Scottish Universities Physics Alliance. The authors are grateful to the editors and referees for their constructive comments.
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
The aim of this master thesis is to study the exponential decay of solutions of elliptic partial equations. This work is based on the results obtained by Agmon. To this purpose, first, we define the Agmon metric, that plays an important role in the study of exponential decay, because it is related to the rate of decay. Under some assumptions on the growth of the function and on the positivity of the quadratic form associated to the operator, a first result of exponential decay is presented. This result is then applied to show the exponential decay of eigenfunctions with eigenvalues whose real part lies below the bottom of the essential spectrum. Finally, three examples are given: the harmonic oscillator, the hydrogen atom and a Schrödinger operator with purely discrete spectrum.
Resumo:
This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.
Resumo:
El efecto de la frecuencia portadora sobre los valores propios de los sistemas MIMO (multiple-input multiple-output) es investigado experimentalmente en un entorno indoor, considerando condiciones de línea de vista (LOS: line-of-sight) y sin línea de vista (NLOS: non-line-of-sight). Los resultados muestran una reducción en la potencia media de los valores propios del sistema MIMO, lo cual es debido a un incremento en la correlación espacial entre los sub-canales cuando la frecuencia portadora se incrementa. Este efecto causa una reducción en la capacidad del sistema MIMO.
Resumo:
This dissertation investigates the connection between spectral analysis and frame theory. When considering the spectral properties of a frame, we present a few novel results relating to the spectral decomposition. We first show that scalable frames have the property that the inner product of the scaling coefficients and the eigenvectors must equal the inverse eigenvalues. From this, we prove a similar result when an approximate scaling is obtained. We then focus on the optimization problems inherent to the scalable frames by first showing that there is an equivalence between scaling a frame and optimization problems with a non-restrictive objective function. Various objective functions are considered, and an analysis of the solution type is presented. For linear objectives, we can encourage sparse scalings, and with barrier objective functions, we force dense solutions. We further consider frames in high dimensions, and derive various solution techniques. From here, we restrict ourselves to various frame classes, to add more specificity to the results. Using frames generated from distributions allows for the placement of probabilistic bounds on scalability. For discrete distributions (Bernoulli and Rademacher), we bound the probability of encountering an ONB, and for continuous symmetric distributions (Uniform and Gaussian), we show that symmetry is retained in the transformed domain. We also prove several hyperplane-separation results. With the theory developed, we discuss graph applications of the scalability framework. We make a connection with graph conditioning, and show the in-feasibility of the problem in the general case. After a modification, we show that any complete graph can be conditioned. We then present a modification of standard PCA (robust PCA) developed by Cand\`es, and give some background into Electron Energy-Loss Spectroscopy (EELS). We design a novel scheme for the processing of EELS through robust PCA and least-squares regression, and test this scheme on biological samples. Finally, we take the idea of robust PCA and apply the technique of kernel PCA to perform robust manifold learning. We derive the problem and present an algorithm for its solution. There is also discussion of the differences with RPCA that make theoretical guarantees difficult.
Resumo:
Objectives: Because there is scientific evidence that an appropriate intake of dietary fibre should be part of a healthy diet, given its importance in promoting health, the present study aimed to develop and validate an instrument to evaluate the knowledge of the general population about dietary fibres. Study design: The present study was a cross sectional study. Methods: The methodological study of psychometric validation was conducted with 6010 participants, residing in ten countries from 3 continents. The instrument is a questionnaire of self-response, aimed at collecting information on knowledge about food fibres. For exploratory factor analysis (EFA) was chosen the analysis of the main components using varimax orthogonal rotation and eigenvalues greater than 1. In confirmatory factor analysis by structural equation modelling (SEM) was considered the covariance matrix and adopted the Maximum Likelihood Estimation algorithm for parameter estimation. Results: Exploratory factor analysis retained two factors. The first was called Dietary Fibre and Promotion of Health (DFPH) and included 7 questions that explained 33.94 % of total variance ( = 0.852). The second was named Sources of Dietary Fibre (SDF) and included 4 questions that explained 22.46% of total variance ( = 0.786). The model was tested by SEM giving a final solution with four questions in each factor. This model showed a very good fit in practically all the indexes considered, except for the ratio 2/df. The values of average variance extracted (0.458 and 0.483) demonstrate the existence of convergent validity; the results also prove the existence of discriminant validity of the factors (r2 = 0.028) and finally good internal consistency was confirmed by the values of composite reliability (0.854 and 0.787). Conclusions: This study allowed validating the KADF scale, increasing the degree of confidence in the information obtained through this instrument in this and in future studies.
Resumo:
Consider two graphs G and H. Let H^k[G] be the lexicographic product of H^k and G, where H^k is the lexicographic product of the graph H by itself k times. In this paper, we determine the spectrum of H^k[G]H and H^k when G and H are regular and the Laplacian spectrum of H^k[G] and H^k for G and H arbitrary. Particular emphasis is given to the least eigenvalue of the adjacency matrix in the case of lexicographic powers of regular graphs, and to the algebraic connectivity and the largest Laplacian eigenvalues in the case of lexicographic powers of arbitrary graphs. This approach allows the determination of the spectrum (in case of regular graphs) and Laplacian spectrum (for arbitrary graphs) of huge graphs. As an example, the spectrum of the lexicographic power of the Petersen graph with the googol number (that is, 10^100 ) of vertices is determined. The paper finishes with the extension of some well known spectral and combinatorial invariant properties of graphs to its lexicographic powers.
Resumo:
Let G be a simple graph on n vertices and e(G) edges. Consider the signless Laplacian, Q(G) = D + A, where A is the adjacency matrix and D is the diagonal matrix of the vertices degree of G. Let q1(G) and q2(G) be the first and the second largest eigenvalues of Q(G), respectively, and denote by S+ n the star graph with an additional edge. It is proved that inequality q1(G)+q2(G) e(G)+3 is tighter for the graph S+ n among all firefly graphs and also tighter to S+ n than to the graphs Kk _ Kn−k recently presented by Ashraf, Omidi and Tayfeh-Rezaie. Also, it is conjectured that S+ n minimizes f(G) = e(G) − q1(G) − q2(G) among all graphs G on n vertices.
Resumo:
The energy of a symmetric matrix is the sum of the absolute values of its eigenvalues. We introduce a lower bound for the energy of a symmetric partitioned matrix into blocks. This bound is related to the spectrum of its quotient matrix. Furthermore, we study necessary conditions for the equality. Applications to the energy of the generalized composition of a family of arbitrary graphs are obtained. A lower bound for the energy of a graph with a bridge is given. Some computational experiments are presented in order to show that, in some cases, the obtained lower bound is incomparable with the well known lower bound $2\sqrt{m}$, where $m$ is the number of edges of the graph.
Resumo:
We present some estimates of the time of convergence to the equilibrium distribution in autonomous and periodic non-autonomous graphs, with ergodic stochastic adjacency matrices, using the eigenvalues of these matrices. On this way we generalize previous results from several authors, that only considered reversible matrices.
Resumo:
This paper presents a validation study of the Perceived Social Competence in Career Scale (SCCarS). The sample included 571 adolescents, 283 girls (49.6%) and 287 boys (50.3%), aged 14 to 25 years old (ì=16.33±1.41), 10th and 11th grade students attending secondary schools in the northern, central and southern Portugal. Exploratory factor analysis indicates the presence of eight factors, with eigenvalues superior to 1.00, explaining 79.16% of the total variance of the items. Confirmatory factor analysis provided support to the factorial structure of eight factors, with adequate fit indices (X2/df=4.229, CFI= 0.909, GFI= 0.869, RMSEA= 0.079, p= 0.000). These results are consistent with the factorial structure found in previous studies carried out with Portuguese samples from 8th grade. Implications are drawn related to the need for further study of the psychometric characteristics of the SCCarS with young people from different age groups
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.