955 resultados para ecosystem restoration
Resumo:
The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)
Resumo:
Silver King Creek, Alpine County, is the native range of the Federally-threatened Paiute cutthroat trout, Oncorhynchus clarki seleniris. Paiute cutthroat currently inhabit Coyote Valley and Corral Valley creeks, which are tributaries to Silver King Creek below Llewellyn Falls, and also Silver King Creek and tributaries aboye Llewellyn Falls. Rainbow trout, O. mykiss, were introduced into the basin during 1949 and became hybridized with Paiute cutthroat. Chemical treatments attempted by the California Department of Fish and Game (CDFG) in 1964 and 1976 failed to eliminate hybrid trout. A chemical treatment project was again conducted by the CDFG from 1991 through 1993 to eliminate hybrid trout from within the range of Paiute cutthroat. This report presents a summary of events for the first two years of the Silver King Paiute Cutthroat Trout Restoration Project; a more thorough analysis is made of the third and final year of the project. (PDF contains 39 pages.)
Resumo:
Folgende Kernbehauptungen bzw. Hypothesen werden in dem Worm-et-al.-Artikel aufgestellt: -Der Verlust an Biodiversität (Artenzahl) in einem Meeresgebiet reduziert tief greifend seine Produktivität und seine Stabilität in Stressperioden, hervorgerufen u.a. durch Überfischung und Klimaänderung. -Die Zahl der kollabierten Arten nimmt zu. Dieser Trend projeziert den Kollaps aller wildlebenden Arten und Bestände, die gegenwärtig befischt werden, auf das Jahr 2048. -Diese Entwicklung ist zum gegenwärtigen Zeitpunkt reversibel, denn das Meer besitzt noch ein großes Potential sich zu regenerieren. Dazu ist aber mehr Umweltschutz notwendig.
Resumo:
The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)
Resumo:
HIGHLIGHTS FOR FY 2006 1. Captured and tagged 475 Gulf sturgeons in five Florida rivers and one bay. 2. Documented Gulf sturgeon marine movement and habitat use in the Gulf of Mexico. 3. Assisted the National Oceanic and Atmospheric Administration (NOAA) with the collection of Gulf sturgeon, implantation of acoustic tags, and monitoring of fish in a study to examine movement patterns and habitat use in Pensacola and Choctawhatchee bays post-Hurricane Ivan. 4. Provided technical assistance to Jon “Bo” Sawyer in completing a study – Summer Resting Areas of the Gulf Sturgeon in the Conecuh/Escambia River System, Alabama-Florida – for acquiring a Degree of Master of Science at Troy University, Alabama. 5. Coordinated tagging and data collection with NOAA observers aboard trawlers while collecting Gulf sturgeon during dredging operations in the coastal Gulf of Mexico. 6. Hosted the 7th Annual Gulf Sturgeon Workshop. 7. Implemented Gulf Striped Bass Restoration Plan by coordinating the 23rd Annual Morone Workshop, leading the technical committee, transporting broodfish, coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system, and evaluating post-stocking success. 8. Continued updating and managing the Freshwater Mussel Survey Database, a Geographic Information System (GIS) database, for over 800 unique sites in the Northeast Gulf (NEG) drainages in Alabama (AL), Georgia (GA), and Florida (FL). 9. Formed a recovery implementation team for listed mussels in the ACF river basin and oversaw grant cooperative agreements for 14 listed and candidate freshwater mussels in the NEG watersheds. 10. Initiated a project in the Apalachicola River to relocate mussels stranded as a result of drought conditions, and calculate river flows at which mussels would be exposed. 11. Initiated a project in Sawhatchee Creek, Georgia to determine the status of threatened and endangered (T&E) freshwater mussels and target restoration projects, population assessments, and potential population augmentation to lead toward recovery of the listed species. 12. Initiated a study to determine the age and growth of the endangered fat threeridge mussel (Amblema neislerii). 13. Provided technical assistance to the Panama City Ecological Services office for a biological opinion on the operations of Jim Woodruff Lock and Dam and its effects on the listed species and designated and proposed critical habitat in the Apalachicola River, Florida. 14. Assisted with a multi-State, inter-agency team to develop a management plan to restore the Alabama shad in the ACF river system. 15. Conducted fishery surveys on Tyndall AFB, Florida and Ft. Benning, Georgia and completed a report with recommendations for future recreational fishery needs. 16. Provided fishery technical assistance to four National Wildlife Refuges (NWR) (i.e., Okefenokee NWR, Banks Lake NWR, St. Vincent NWR, and St. Marks NWR). 17. Initiated an Aquatic Resources and Recreation Fishing Survey on Department of Defense facilities located in Region 4. 18. Identified 130 road-stream crossings on Eglin AFB for rehabilitation and elimination of sediment imputs. 19. Continued the Aquatics Monitoring Program at Eglin AFB to assess techniques that determine current status and sustainability of aquatic habitat and develop a measure to determine quality or degradation of habitat. 20. Assisted Eglin AFB Natural Resource managers in revising the installation’s Integrated Natural Resources Management Plan (INRMP) and its associated component plans. 21. Coordinated recovery efforts for the endangered Okaloosa darter including population/life history surveys, stream restoration, and outreach activities. 22. Initiated a comprehensive status review of the Okaloosa darter with analyses performed to assess available habitat, preferred habitats, range expansions/reductions/fragmentations, population size, and probability of extinction. 23. Assisted the Gulf Coastal Plain Ecosystem Partnership and the Florida Fish and Wildlife Conservation Commission (FWC) under a Memorandum of Agreement to develop conservation strategies, implement monitoring and assessment programs, and secure funds for aquatic management programs in six watersheds in northwest Florida and southeast Alabama. 24. Entered into a cooperative agreement with the U.S. Air Force to encourage the conservation and rehabilitation of natural resources at Hurlburt Field, Florida. 25. Multiple outreach projects were completed to detail aquatic resources’ conservation needs and opportunities; including National Fishing Week, Earth Day, several festivals, and school outreach.
Resumo:
HIGHLIGHTS FOR FY 2005 1. Assisted with a study to assess hurricane impacts to Gulf sturgeon critical foraging habitat. 2. Documented Gulf sturgeon marine movement and habitat use in the Gulf of Mexico. 3. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Apalachicola River, Florida. 4. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Yellow River, Florida. 5. Assisted with benthic invertebrate survey at Gulf sturgeon marine foraging grounds. 6. Implemented Gulf Striped Bass Restoration Plan by coordinating the 22nd Annual Morone Workshop, leading the technical committee, transporting broodfish, and coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system. 7. Over 87,000 Phase II Gulf striped bass were marked with sequential coded wire tags and stocked in the Apalachicola River. Post-stocking evaluations were conducted at 45 sites in the fall and spring and 8 thermal refuges in the summer. 8. Completed fishery surveys on 4 ponds on Eglin AFB totaling 53 acres, and completed a report with recommendations for future recreational fishery needs. 9. Completed final report for aquatic monitoring at Eglin AFB from 1999 to 2004. 10. Completed a field collection of the endangered Okaloosa darter to be incorporated into a status review to be completed in FY06. 11. Provided technical assistance to the Region 4 National Wildlife Refuge (NWR) program on changes to the fishery conservation targets for the region. Also provided technical assistance to four NWRs (i.e., Okefenokee NWR, Banks Lake NWR, St. Vincent NWR, and St. Marks NWR) relative to hurricanes and recreational fishing. 12. A draft mussel sampling protocol was tested in wadeable streams in Northwest Florida and southwest Georgia, and an associated field guide, poster, and Freshwater Mussel Survey Protocol and Identification workshop were completed in FY05. 13. Implemented recovery plan and candidate conservation actions for 14 listed and candidate freshwater mussels in the Northeast Gulf Watersheds. 14. Initiated or completed multiple stream restoration and watershed management projects. A total of 7.5 stream miles were restored for stream fishes, and 11 miles of coastline were enhanced for sea turtle lighting. A total of 630 acres of wetlands and 2,401 acres of understory habitat were restored. 15. Conducted a watershed assessment to develop a threats analysis for prioritizing restoration, protection, and enhancement to natural resources of Spring Creek, Georgia and Canoe Creek, Florida. 16. Continued the formation of an Unpaved Road Interagency Team of Federal, State, and local agencies in Northwest Florida to promote stream protection and restoration from unpaved road sediment runoff. Began the development of a technical committee agreement. 17. Conducted Alabama Unpaved Road Inventory within the Northeast Gulf Ecosystem. Data collection will be completed during FY06. 18. Finalized the development of two North Florida hydrophysiographic regional curves for use by the Florida Department of Transportation (DOT) and others involved with stream restoration and protection. Initiated the development of the Alabama Coastal Plain Riparian Reference Reach and Regional Curves for use by the Alabama Department of Environmental Management (ADEM). 19. Provided technical assistance in collecting data, analysis, and thesis formulation with Troy University, Alabama, to identify the influence of large woody debris in southeastern coastal plain streams. 20. Completed pre- and post-restoration fish community monitoring at several restoration projects including Big Escambia Creek, Magnolia Creek, and Oyster Lake, Florida. 21. Established a watershed partnership for the Chipola River in Alabama and Florida and expanded development and participation in the Spring Creek Watershed Partnership, Georgia. 22. Continued to identify barriers which inhibit the movement of aquatic species within the Northeast Gulf Ecoregion. 23. Completed a report on road crossing structures in Okaloosa darter streams to guide the closure/repair/maintenance of roads to contribute to recovery of the endangered species. In cooperation with Three Rivers RC&D Council, fish passage sites identified in the report were prioritized for restoration. 24. Monitored Aquatic Nuisance Species in the Apalachicola River and tested the sterility of exotic grass carp. 25. Multiple outreach projects were completed to detail aquatic resources conservation needs and opportunities. Participated in National Fishing Week event, several festivals, and school outreach.
Resumo:
HIGHLIGHTS FOR FY 2003 1. Continued a 3-year threatened Gulf sturgeon population estimate in the Escambia River, Florida and conducted presence-absence surveys in 4 other Florida river systems and 1 bay. 2. Five juvenile Gulf sturgeon collected, near the mouth of the Choctawhatchee River, Florida, were equipped with sonic tags and monitored while over-wintering in Choctawhatchee Bay. 3. Continued to examine Gulf sturgeon marine habitat use. 4. Implemented Gulf Striped Bass Restoration Plan by coordinating the 20th Annual Morone Workshop, leading the technical committee, transporting broodfish, and coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system. 5. Over 73,000 Phase II Gulf striped bass were marked with sequential coded wire tags and stocked in the Apalachicola River. Post-stocking evaluations were conducted at 31 sites. 6. Three stream fisheries assessment s were completed to evaluate the fish community at sites slated for habitat restoration by the Partners for Fish and Wildlife Program (PFW). 7. PFW program identified restoration needs and opportunities for 10 areas. 8. Developed an Unpaved Road Evaluation Handbook. 9. Completed restoration of Chipola River Greenway, Seibenhener Streambank Restoration, Blackwater River State Forest, and Anderson Property. 10. Assessments for fluvial geomorphic conditions for design criteria were completed for 3 projects. 11. Geomorphology in Florida streams initiated development of Rosgen regional curves for Northwest Florida for use by the Florida Department of Transportation. 12. Developed a Memorandum of Understanding between partners for enhancing, protecting, and restoring stream, wetland, and upland habitat in northwest Florida 13. Completed aquatic fauna and fish surveys with new emphasis on integration of data from reach level into watershed and landscape scale and keeping database current. 14. Compliance based sampling of impaired waterbodies on Eglin Air Force Base in conjunction with Florida Department of Environmental Protection for Total Maximum Daily Load development support. 15. Surveyed 20 sites for the federally endangered Okaloosa darter, provided habitat descriptions, worked with partners to implement key recovery tasks and set priorities for restoration. 16. Worked with partners to develop a freshwater mussel survey protocol to provide standard operating procedures for establishing the presence/absence of federally listed mussel species within a Federal project area. 17. GIS database was created to identify all known freshwater mussel records from the northeast Gulf ecosystem. 18. Completed recovery plan for seven freshwater mussels and drafted candidate elevation package for seven additional mussels. Developed proposals to implement recovery plan. 19. Worked with Corps of Engineers and State partners to develop improved reservoir operating policies to benefit both riverine and reservoir fisheries for the ACF river system. 20. Multiple outreach projects were completed to detail aquatic resources conservation opportunities. 21. Multiple stream restoration and watershed management projects initiated or completed (see Appendix A).
Resumo:
HIGHLIGHTS FOR FY 2002 1. United States Senator Bob Graham assisted with a Gulf sturgeon survey. 2. Completed 3-year Gulf sturgeon population study in the Choctawhatchee River drainage. 3. Completed Gulf sturgeon potential spawning habitat survey for Northwest Florida and Southeast Alabama river systems. 4. Initiated Gulf sturgeon marine habitat and food resources study. 5. Completed Gulf sturgeon sentinel fish study. 6. Coordinated and conducted tagging of over 110,000 Phase II striped bass at Welaka and Warm Springs National Fish Hatchery. 7. Completed Okefenokee National Wildlife Refuge fishery sampling. 8. Developed a manuscript regarding the fishery of Banks Lake NWR. 9. Initiated development of a fish Index of Biotic Integrity for Florida panhandle streams. 10. Coordinated Okaloosa darter workshop. 11. Continued examining insect communities on Eglin AFB. 12. Sponsored and coordinated stream restoration workshop. 13. Provided technical assistance via Partners for Fish and Wildlife for stream restoration within the Northeast Gulf Ecosystem. 14. Finalized regional curve development in the Northern Region of Florida and secured significant funds for FY03 to expand to other regions in Florida. 15. Initiated freshwater mussel conservation in the Northeastern Gulf Ecosystem.
Resumo:
Nypa fruticans occurs in Bayelsa, Rivers, Akwa Ibom and Cross River State, Nigeria; invading an estimated area of 821 Km super(2) mangrove dominated swamps. Human activities such as tree felling, urbanization, oil and gas exploration and exploitation and other activities led to the interference in the normal mangrove by the Nypa palm. Lack of utilization by the local population of the Nypa palm as in into-pacification has increased the population over the years. The effect includes the reduction in primary and secondary productivity, disruption of food chain and erosion of riverbanks. The eradication of the Nypa palm from the Niger delta mangrove ecosystem and replacement with red and white mangroves will restore the ecosystem health and enhance biological diversity
Pressures on the biota in the aquatic ecosystem of (Chi) Cross River National Park, Okwango Division
Resumo:
A preliminary survey of Cross River National Park (Nigeria), Okwangwo Division was carried out. The combined natural and human pressures being exerted on the aquatic resources were also investigated. Information on the existing fishing communities in and around the park area are given. The fishermen, their fishing methods and fishing grounds were identified. Limiting factors (natural and human) to the fisheries production, are analysed. Positive measures for conservation, protection and management of healthy and natural aquatic environment are suggested
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
The foundation of Habermas's argument, a leading critical theorist, lies in the unequal distribution of wealth across society. He states that in an advanced capitalist society, the possibility of a crisis has shifted from the economic and political spheres to the legitimation system. Legitimation crises increase the more government intervenes into the economy (market) and the "simultaneous political enfranchisement of almost the entire adult population" (Holub, 1991, p. 88). The reason for this increase is because policymakers in advanced capitalist democracies are caught between conflicting imperatives: they are expected to serve the interests of their nation as a whole, but they must prop up an economic system that benefits the wealthy at the expense of most workers and the environment. Habermas argues that the driving force in history is an expectation, built into the nature of language, that norms, laws, and institutions will serve the interests of the entire population and not just those of a special group. In his view, policy makers in capitalist societies are having to fend off this expectation by simultaneously correcting some of the inequities of the market, denying that they have control over people's economic circumstances, and defending the market as an equitable allocator of income. (deHaven-Smith, 1988, p. 14). Critical theory suggests that this contradiction will be reflected in Everglades policy by communicative narratives that suppress and conceal tensions between environmental and economic priorities. Habermas’ Legitimation Crisis states that political actors use various symbols, ideologies, narratives, and language to engage the public and avoid a legitimation crisis. These influences not only manipulate the general population into desiring what has been manufactured for them, but also leave them feeling unfulfilled and alienated. Also known as false reconciliation, the public's view of society as rational, and "conductive to human freedom and happiness" is altered to become deeply irrational and an obstacle to the desired freedom and happiness (Finlayson, 2005, p. 5). These obstacles and irrationalities give rise to potential crises in the society. Government's increasing involvement in Everglades under advanced capitalism leads to Habermas's four crises: economic/environmental, rationality, legitimation, and motivation. These crises are occurring simultaneously, work in conjunction with each other, and arise when a principle of organization is challenged by increased production needs (deHaven-Smith, 1988). Habermas states that governments use narratives in an attempt to rationalize, legitimize, obscure, and conceal its actions under advanced capitalism. Although there have been many narratives told throughout the history of the Everglades (such as the Everglades was a wilderness that was valued as a wasteland in its natural state), the most recent narrative, “Everglades Restoration”, is the focus of this paper.(PDF contains 4 pages)
Resumo:
This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages)
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)