917 resultados para dynamic time warping
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.
Resumo:
BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear represents an important therapeutic tool during the rehabilitation process. Local Dynamic Stability (LDS) is the ability of locomotor system to maintain continuous walking by accommodating small perturbations that occur naturally during walking. Because it reflects the degree of control over the gait, LDS has been advocated as a relevant indicator for evaluating different conditions and pathologies. The aim of this study was to analyze changes in LDS induced by orthopaedic shoes in patients with persistent foot and ankle injuries. We hypothesised that footwear adaptation might help patients to improve gait control, which could lead to higher LDS: METHODS: Twenty-five middle-aged inpatients (5 females, 20 males) participated in the study. They were treated for chronic post-traumatic disabilities following ankle and/or foot fractures in a Swiss rehabilitation clinic. During their stay, included inpatients received orthopaedic shoes with custom-made orthoses (insoles). They performed two 30s walking trials with standard shoes and two 30s trials with orthopaedic shoes. A triaxial motion sensor recorded 3D accelerations at the lower back level. LDS was assessed by computing divergence exponents in the acceleration signals (maximal Lyapunov exponents). Pain was evaluated with Visual Analogue Scale (VAS). LDS and pain differences between the trials with standard shoes and the trials with orthopaedic shoes were assessed. RESULTS: Orthopaedic shoes significantly improved LDS in the three axes (medio-lateral: 10% relative change, paired t-test p < 0.001; vertical: 9%, p = 0.03; antero-posterior: 7%, p = 0.04). A significant decrease in pain level (VAS score -29%) was observed. CONCLUSIONS: Footwear adaptation led to pain relief and to improved foot & ankle proprioception. It is likely that that enhancement allows patients to better control foot placement. As a result, higher dynamic stability has been observed. LDS seems therefore a valuable index that could be used in early evaluation of footwear outcome in clinical settings.
Resumo:
Summary Throughout my thesis, I elaborate on how real and financing frictions affect corporate decision making under uncertainty, and I explore how firms time their investment and financing decisions given such frictions. While the macroeconomics literature has focused on the impact of real frictions on investment decisions assuming all equity financed firms, the financial economics literature has mainly focused on the study of financing frictions. My thesis therefore assesses the join interaction of real and financing frictions in firms' dynamic investment and financing decisions. My work provides a rationale for the documented poor empirical performance of neoclassical investment models based on the joint effect of real and financing frictions on investment. A major observation relies in how the infrequency of corporate decisions may affect standard empirical tests. My thesis suggests that the book to market sorts commonly used in the empirical asset pricing literature have economic content, as they control for the lumpiness in firms' optimal investment policies. My work also elaborates on the effects of asymmetric information and strategic interaction on firms' investment and financing decisions. I study how firms time their decision to raise public equity when outside investors lack information about their future investment prospects. I derive areal-options model that predicts either cold or hot markets for new stock issues conditional on adverse selection, and I provide a rational approach to study jointly the market timing of corporate decisions and announcement effects in stock returns. My doctoral dissertation therefore contributes to our understanding of how under real and financing frictions may bias standard empirical tests, elaborates on how adverse selection may induce hot and cold markets in new issues' markets, and suggests how the underlying economic behaviour of firms may induce alternative patterns in stock prices.
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
Several patient-related variables have already been investigated as predictors of change in psychodynamic psychotherapy. Defensive functioning is one of them. However, few studies have investigated adaptational processes, encompassing defence mechanisms and coping, from an integrative or comparative viewpoint. This study includes 32 patients, mainly diagnosed with adjustment disorder and undergoing time-limited psychodynamic psychotherapy lasting up to 40 sessions, and will focus on early change in defence and coping. Observer-rater methodology was applied to the transcripts of two sessions of the first part of the psychotherapeutic process. It is assumed that the contextual-relational variable of therapeutic alliance intervenes as moderator on change in adaptational processes. Results corroborated the hypothesis, but only for coping, whereas for defences, overall functioning remained stable over the first 20 sessions of psychotherapy. These results are discussed within the framework of disentangling processes underlying adaptation, i.e., related to issues on trait and state aspects, as well as the role of the therapeutic alliance.
Resumo:
Many revenue management (RM) industries are characterized by (a) fixed capacities in theshort term (e.g., hotel rooms, seats on an airline flight), (b) homogeneous products (e.g., twoairline flights between the same cities at similar times), and (c) customer purchasing decisionslargely influenced by price. Competition in these industries is also very high even with just twoor three direct competitors in a market. However, RM competition is not well understood andpractically all known implementations of RM software and most published models of RM donot explicitly model competition. For this reason, there has been considerable recent interestand research activity to understand RM competition. In this paper we study price competitionfor an oligopoly in a dynamic setting, where each of the sellers has a fixed number of unitsavailable for sale over a fixed number of periods. Demand is stochastic, and depending on howit evolves, sellers may change their prices at any time. This reflects the fact that firms constantly,and almost costlessly, change their prices (alternately, allocations at a price in quantity-basedRM), reacting either to updates in their estimates of market demand, competitor prices, orinventory levels. We first prove existence of a unique subgame-perfect equilibrium for a duopoly.In equilibrium, in each state sellers engage in Bertrand competition, so that the seller withthe lowest reservation value ends up selling a unit at a price that is equal to the equilibriumreservation value of the competitor. This structure hence extends the marginal-value conceptof bid-price control, used in many RM implementations, to a competitive model. In addition,we show that the seller with the lowest capacity sells all its units first. Furthermore, we extendthe results transparently to n firms and perform a number of numerical comparative staticsexploiting the uniqueness of the subgame-perfect equilibrium.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.
Resumo:
We analyze the impact of a minimum price variation (tick) and timepriority on the dynamics of quotes and the trading costs when competitionfor the order flow is dynamic. We find that convergence to competitiveoutcomes can take time and that the speed of convergence is influencedby the tick size, the priority rule and the characteristics of the orderarrival process. We show also that a zero minimum price variation is neveroptimal when competition for the order flow is dynamic. We compare thetrading outcomes with and without time priority. Time priority is shownto guarantee that uncompetitive spreads cannot be sustained over time.However it can sometimes result in higher trading costs. Empiricalimplications are proposed. In particular, we relate the size of thetrading costs to the frequency of new offers and the dynamics of theinside spread to the state of the book.
Resumo:
Abstract One requirement for psychotherapy research is an accurate assessment of therapeutic interventions across studies. This study compared frequency and depth of therapist interventions from a dynamic perspective across four studies, conducted in four countries, including three treatment arms of psychodynamic psychotherapy, and one each of psychoanalysis and CBT. All studies used the Psychodynamic Intervention Rating Scales (PIRS) to identify 10 interventions from transcribed whole sessions early and later in treatment. The PIRS adequately categorized all interventions, except in CBT (only 91-93% categorized). As hypothesized, interpretations were present in all dynamic therapies and relatively absent in CBT. Proportions of interpretations increased over time. Defense interpretations were more common than transference interpretations, which were most prevalent in psychoanalysis. Depth of interpretations also increased over time. These data can serve as norms for measuring where on the supportive-interpretive continuum a dynamic treatment lies, as well as identify potentially mutative interventions for further process and outcome study.
Resumo:
This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18-24 Hz) and one in the gamma-band (30-40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices.
Resumo:
AIM: MRI and PET with 18F-fluoro-ethyl-tyrosine (FET) have been increasingly used to evaluate patients with gliomas. Our purpose was to assess the additive value of MR spectroscopy (MRS), diffusion imaging and dynamic FET-PET for glioma grading. PATIENTS, METHODS: 38 patients (42 ± 15 aged, F/M: 0.46) with untreated histologically proven brain gliomas were included. All underwent conventional MRI, MRS, diffusion sequences, and FET-PET within 3±4 weeks. Performances of tumour FET time-activity-curve, early-to-middle SUVmax ratio, choline / creatine ratio and ADC histogram distribution pattern for gliomas grading were assessed, as compared to histology. Combination of these parameters and respective odds were also evaluated. RESULTS: Tumour time-activity-curve reached the best accuracy (67%) when taken alone to distinguish between low and high-grade gliomas, followed by ADC histogram analysis (65%). Combination of time-activity-curve and ADC histogram analysis improved the sensitivity from 67% to 86% and the specificity from 63-67% to 100% (p < 0.008). On multivariate logistic regression analysis, negative slope of the tumour FET time-activity-curve however remains the best predictor of high-grade glioma (odds 7.6, SE 6.8, p = 0.022). CONCLUSION: Combination of dynamic FET-PET and diffusion MRI reached good performance for gliomas grading. The use of FET-PET/MR may be highly relevant in the initial assessment of primary brain tumours.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.