962 resultados para data complexity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many natural events that can negatively affect the urban ecosystem, but weather-climate variations are certainly among the most significant. The history of settlements has been characterized by extreme events like earthquakes and floods, which repeat themselves at different times, causing extensive damage to the built heritage on a structural and urban scale. Changes in climate also alter various climatic subsystems, changing rainfall regimes and hydrological cycles, increasing the frequency and intensity of extreme precipitation events (heavy rainfall).  From an hydrological risk perspective, it is crucial to understand future events that could occur and their magnitude in order to design safer infrastructures. Unfortunately, it is not easy to understand future scenarios as the complexity of climate is enormous.  For this thesis, precipitation and discharge extremes were primarily used as data sources. It is important to underline that the two data sets are not separated: changes in rainfall regime, due to climate change, could significantly affect overflows into receiving water bodies. It is imperative that we understand and model climate change effects on water structures to support the development of adaptation strategies.   The main purpose of this thesis is to search for suitable water structures for a road located along the Tione River. Therefore, through the analysis of the area from a hydrological point of view, we aim to guarantee the safety of the infrastructure over time.   The observations made have the purpose to underline how models such as a stochastic one can improve the quality of an analysis for design purposes, and influence choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstructive sleep apnea syndrome has a high prevalence among adults. Cephalometric variables can be a valuable method for evaluating patients with this syndrome. To correlate cephalometric data with the apnea-hypopnea sleep index. We performed a retrospective and cross-sectional study that analyzed the cephalometric data of patients followed in the Sleep Disorders Outpatient Clinic of the Discipline of Otorhinolaryngology of a university hospital, from June 2007 to May 2012. Ninety-six patients were included, 45 men, and 51 women, with a mean age of 50.3 years. A total of 11 patients had snoring, 20 had mild apnea, 26 had moderate apnea, and 39 had severe apnea. The distance from the hyoid bone to the mandibular plane was the only variable that showed a statistically significant correlation with the apnea-hypopnea index. Cephalometric variables are useful tools for the understanding of obstructive sleep apnea syndrome. The distance from the hyoid bone to the mandibular plane showed a statistically significant correlation with the apnea-hypopnea index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the completeness and reliability of the Information System on Live Births (Sinasc) data. A cross-sectional analysis of the reliability and completeness of Sinasc's data was performed using a sample of Live Birth Certificate (LBC) from 2009, related to births from Campinas, Southeast Brazil. For data analysis, hospitals were grouped according to category of service (Unified National Health System, private or both), 600 LBCs were randomly selected and the data were collected in LBC-copies through mothers and newborns' hospital records and by telephone interviews. The completeness of LBCs was evaluated, calculating the percentage of blank fields, and the LBCs agreement comparing the originals with the copies was evaluated by Kappa and intraclass correlation coefficients. The percentage of completeness of LBCs ranged from 99.8%-100%. For the most items, the agreement was excellent. However, the agreement was acceptable for marital status, maternal education and newborn infants' race/color, low for prenatal visits and presence of birth defects, and very low for the number of deceased children. The results showed that the municipality Sinasc is reliable for most of the studied variables. Investments in training of the professionals are suggested in an attempt to improve system capacity to support planning and implementation of health activities for the benefit of maternal and child population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with obstructive sleep apnea syndrome usually present with changes in upper airway morphology and/or body fat distribution, which may occur throughout life and increase the severity of obstructive sleep apnea syndrome with age. To correlate cephalometric and anthropometric measures with obstructive sleep apnea syndrome severity in different age groups. A retrospective study of cephalometric and anthropometric measures of 102 patients with obstructive sleep apnea syndrome was analyzed. Patients were divided into three age groups (≥20 and <40 years, ≥40 and <60 years, and ≥60 years). Pearson's correlation was performed for these measures with the apnea-hypopnea index in the full sample, and subsequently by age group. The cephalometric measures MP-H (distance between the mandibular plane and the hyoid bone) and PNS-P (distance between the posterior nasal spine and the tip of the soft palate) and the neck and waist circumferences showed a statistically significant correlation with apnea-hypopnea index in both the full sample and in the ≥40 and <60 years age group. These variables did not show any significant correlation with the other two age groups (<40 and ≥60 years). Cephalometric measurements MP-H and PNS-P and cervical and waist circumferences correlated with obstructive sleep apnea syndrome severity in patients in the ≥40 and <60 age group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-l-triiodothyronine (T3), with persistent elevation of free-circulating T3 (FT3) and free thyroxine (FT4) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.