864 resultados para complex systems
Resumo:
The time dependent response of a polar solvent to a changing charge distribution is studied in solvation dynamics. The change in the energy of the solute is measured by a time domain Stokes shift in the fluorescence spectrum of the solute. Alternatively, one can use sophisticated non-linear optical spectroscopic techniques to measure the energy fluctuation of the solute at equilibrium. In both methods, the measured dynamic response is expressed by the normalized solvation time correlation function, S(t). The latter is found to exhibit uniquefeatures reflecting both the static and dynamic characteristics of each solvent. For water, S(t) consists of a dominant sub-50 fs ultrafast component, followed by a multi-exponential decay. Acetonitrile exhibitsa sub-100 fs ultrafast component, followed by an exponential decay. Alcohols and amides show features unique to each solvent and solvent series. However, understanding and interpretation of these results have proven to be difficult, and often controversial. Theoretical studiesand computer simulations have greatly facilitated the understanding ofS(t) in simple systems. Recently solvation dynamics has been used extensively to explore dynamics of complex systems, like micelles and reverse micelles, protein and DNA hydration layers, sol-gel mixtures and polymers. In each case one observes rich dynamical features, characterized again by multi-exponential decays but the initial and final time constants are now widely separated. In this tutorial review, we discuss the difficulties in interpreting the origin of the observed behaviour in complex systems.
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
We consider a chain composed of $N$ coupled harmonic oscillators in contact with heat baths at temperature $T_\ell$ and $T_r$ at sites 1 and $N$ respectively. The oscillators are also subjected to non-momentum conserving bulk stochastic noises. These make the heat conductivity satisfy Fourier's law. Here we describe some new results about the hydrodynamical equations for typical macroscopic energy and displacement profiles, as well as their fluctuations and large deviations, in two simple models of this type.
Resumo:
The physics of the solid state has grown into that of condensed matter and is now expanding into the study of a bewildering variety of complex systems. After a brief survey of this progression, I enquire into the health of solid state physics; many signs of vitality and growth are found. The Indian scene in this field is briefly sketched, and some suggestions are offered on how to make it more lively,
Resumo:
Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation-in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element, V-el.
Resumo:
Measurements a/the Gibbs' energy enthalpy and entrupy vffarmation oj chromites, vanadites and alumlnat.:s 0/ F", Ni. Co'. Mn, Zn Mg and Cd, using solid oxide galvanic cells over a ternperature range extending approximately lOOO°C, have shown that the '~'Ilir"!,,, J'JrIl/iJ~ tion 0/ cubic 2-3 oxide spinel phases (MX!O,), from component oxide (MO) with rock-salt and X.Os whir c(1f'l/!ldwn st!'llt'lw,·. call b,' represented by a semi-empirical correlalion, ~S~ = --LiS + L'i,SM +~S~:"d(±O.3) cal.deg-1 mol-1 where /',.SM Is the entropy 0/calian mixing oillhe tetrahedral alld octahedral sites o/the spinel and Sr:~ is tlie enfropy associaf,'d Wifh Ih,' randomization a/the lahn-Telier distortions. A review a/the methods/or evaluating the cation distriblltion lfl spille!s suggeJ{j' l/r,l! Ihe most promising scheme is based Oil octahedral site preference energies from the crystal field theory for the Iral1silioll IIIl'f"! IlIIL';. For I/""-Irallsifioll melal cal ions site preference energies are derived relative /0 thol'lt fLI, [ransilion metal ions from measured high tClllP('ftJi ure Cal iUlI disll iiJuriol1 in spine! phases thar contail! one IransilioJl metal and another non-transition metal carion. For 2-3 srinds compulatiorrs b,IS"J Oil i.!c[J;' Temkin mixing on each catioll subialtice predici JistributionJ that are In fair agreement with X-ray and 1I1'IIIrOll ditTraction, /IIdg""!ic dll.! electrical propcrries, and spectroscopic measurements. In 2-4 spineis mixing vI ions do not foliow strictly ideal slllIistli:al Jaws, Th,' OIl/up) associated with the randomizalion 0/the Jllhn-Teller dislOriioll" appear to be significant, only ill spinels witll 3d'. 3d', 3d' (ifld~UI' iOtls in tetrahedral and 3d' and 3d9 ions in octahedral positions. Application 0/this structural model for predicting the thermodynamic proputies ofspinel solid .,olutiofl5 or,' illustrated. F,lr complex systems additional contributions arising from strain fields, redox equilibria and off-center ions have to be qllalllififti. The entropy correlation for spinels provides a method for evaluating structure tran:.jormafiofl entropies in silllple o.\id.-s, ["founlllion on the relative stabilities ofoxides in different crystallCtructures is USe/III for computer ea/culaliof! a/phase dfugrullls ofIlIrer,',,1 III (N.lll1ie5 by method, similar to thost: used by Kaufman and Bernstein for refractory alloy systems. Examples oftechnoiogical appliCation tnclude the predictioll ofdeoxidation equilibria in Fe-Mn-AI-O s),slelll at 1600°C duj ,'Ulllpltfalion 0/phase relutions in Fe-Ni-Cr-S system,
Resumo:
Precision, sophistication and economic factors in many areas of scientific research that demand very high magnitude of compute power is the order of the day. Thus advance research in the area of high performance computing is getting inevitable. The basic principle of sharing and collaborative work by geographically separated computers is known by several names such as metacomputing, scalable computing, cluster computing, internet computing and this has today metamorphosed into a new term known as grid computing. This paper gives an overview of grid computing and compares various grid architectures. We show the role that patterns can play in architecting complex systems, and provide a very pragmatic reference to a set of well-engineered patterns that the practicing developer can apply to crafting his or her own specific applications. We are not aware of pattern-oriented approach being applied to develop and deploy a grid. There are many grid frameworks that are built or are in the process of being functional. All these grids differ in some functionality or the other, though the basic principle over which the grids are built is the same. Despite this there are no standard requirements listed for building a grid. The grid being a very complex system, it is mandatory to have a standard Software Architecture Specification (SAS). We attempt to develop the same for use by any grid user or developer. Specifically, we analyze the grid using an object oriented approach and presenting the architecture using UML. This paper will propose the usage of patterns at all levels (analysis. design and architectural) of the grid development.
Resumo:
Moore's Law has driven the semiconductor revolution enabling over four decades of scaling in frequency, size, complexity, and power. However, the limits of physics are preventing further scaling of speed, forcing a paradigm shift towards multicore computing and parallelization. In effect, the system is taking over the role that the single CPU was playing: high-speed signals running through chips but also packages and boards connect ever more complex systems. High-speed signals making their way through the entire system cause new challenges in the design of computing hardware. Inductance, phase shifts and velocity of light effects, material resonances, and wave behavior become not only prevalent but need to be calculated accurately and rapidly to enable short design cycle times. In essence, to continue scaling with Moore's Law requires the incorporation of Maxwell's equations in the design process. Incorporating Maxwell's equations into the design flow is only possible through the combined power that new algorithms, parallelization and high-speed computing provide. At the same time, incorporation of Maxwell-based models into circuit and system-level simulation presents a massive accuracy, passivity, and scalability challenge. In this tutorial, we navigate through the often confusing terminology and concepts behind field solvers, show how advances in field solvers enable integration into EDA flows, present novel methods for model generation and passivity assurance in large systems, and demonstrate the power of cloud computing in enabling the next generation of scalable Maxwell solvers and the next generation of Moore's Law scaling of systems. We intend to show the truly symbiotic growing relationship between Maxwell and Moore!
Resumo:
Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.
Resumo:
Social scientists have used agent-based models (ABMs) to explore the interaction and feedbacks among social agents and their environments. The bottom-up structure of ABMs enables simulation and investigation of complex systems and their emergent behaviour with a high level of detail; however the stochastic nature and potential combinations of parameters of such models create large non-linear multidimensional “big data,” which are difficult to analyze using traditional statistical methods. Our proposed project seeks to address this challenge by developing algorithms and web-based analysis and visualization tools that provide automated means of discovering complex relationships among variables. The tools will enable modellers to easily manage, analyze, visualize, and compare their output data, and will provide stakeholders, policy makers and the general public with intuitive web interfaces to explore, interact with and provide feedback on otherwise difficult-to-understand models.
Resumo:
The smart grid is a highly complex system that is being formed from the traditional power grid, adding new and sophisticated communication and control devices. This will enable integrating new elements for distributed power generation and also achieving an increasingly automated operation so for actions of the utilities as for customers. In order to model such systems a bottom-up method is followed, using only a few basic elements which are structured into two layers: a physical layer for the electrical power transmission, and one logical layer for element communication. A simple case study is presented to analyse the possibilities of simulation. It shows a microgrid model with dynamic load management and an integrated approach that can process both electrical and communication flows.
Resumo:
In order to analyse the possibilities of improving grid stability on island systems by local demand response mechanisms,a multi-agent simulation model is presented. To support the primary reserve, an under-frequency load shedding (UFLS)using refrigerator loads is modelled. The model represents the system at multiple scales, by recreating each refrigerator individually, and coupling the whole population of refrigerators to a model which simulates the frequency response of the energy system, allowing for cross-scale interactions. Using a simple UFLS strategy, emergent phenomena appear in the simulation. Synchronisation e ects among the individual loads were discovered, which can have strong, undesirable impacts on the system such as oscillations of loads and frequency. The phase transition from a stable to an oscillating system is discussed.