934 resultados para collection count
Resumo:
CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.
Resumo:
The classification of Art painting images is a computer vision applications that isgrowing considerably. The goal of this technology, is to classify an art paintingimage automatically, in terms of artistic style, technique used, or its author. For thispurpose, the image is analyzed extracting some visual features. Many articlesrelated with these problems have been issued, but in general the proposed solutionsare focused in a very specific field. In particular, algorithms are tested using imagesat different resolutions, acquired under different illumination conditions. Thatmakes complicate the performance comparison of the different methods. In thiscontext, it will be very interesting to construct a public art image database, in orderto compare all the existing algorithms under the same conditions. This paperpresents a large art image database, with their corresponding labels according to thefollowing characteristics: title, author, style and technique. Furthermore, a tool thatmanages this database have been developed, and it can be used to extract differentvisual features for any selected image. This data can be exported to a file in CSVformat, allowing researchers to analyze the data with other tools. During the datacollection, the tool stores the elapsed time in the calculation. Thus, this tool alsoallows to compare the efficiency, in computation time, of different mathematicalprocedures for extracting image data.
Resumo:
Part I of this series of articles focused on the construction of graphical probabilistic inference procedures, at various levels of detail, for assessing the evidential value of gunshot residue (GSR) particle evidence. The proposed models - in the form of Bayesian networks - address the issues of background presence of GSR particles, analytical performance (i.e., the efficiency of evidence searching and analysis procedures) and contamination. The use and practical implementation of Bayesian networks for case pre-assessment is also discussed. This paper, Part II, concentrates on Bayesian parameter estimation. This topic complements Part I in that it offers means for producing estimates useable for the numerical specification of the proposed probabilistic graphical models. Bayesian estimation procedures are given a primary focus of attention because they allow the scientist to combine (his/her) prior knowledge about the problem of interest with newly acquired experimental data. The present paper also considers further topics such as the sensitivity of the likelihood ratio due to uncertainty in parameters and the study of likelihood ratio values obtained for members of particular populations (e.g., individuals with or without exposure to GSR).
Resumo:
[Vente. Estampes. 1855-02-05. Paris]
Resumo:
[Vente. Art. 1861-02-15 - 1861-02-16. Paris]
Resumo:
[Vente. Art. 1860-03-23 - 1860-03-24. Paris]