283 resultados para caprolactone
Resumo:
We use a combination of microscopy, x-ray scattering and neutron scattering to show how structure develops in micro and nano-size polymer fibres prepared by electrospinning. The technique has been applied to a range of different polymers, an amorphous system (polystyrene), a crystallisable polymer (poly-epsilon-caprolactone), a composite systems (polyethylene oxide or poly vinyl alcohol containing polypyrrole) and consider the possibility of self assembly (gelatin).
Resumo:
We use new neutron scattering instrumentation to follow in a single quantitative time-resolving experiment, the three key scales of structural development which accompany the crystallisation of synthetic polymers. These length scales span 3 orders of magnitude of the scattering vector. The study of polymer crystallisation dates back to the pioneering experiments of Keller and others who discovered the chain-folded nature of the thin lamellae crystals which are normally found in synthetic polymers. The inherent connectivity of polymers makes their crystallisation a multiscale transformation. Much understanding has developed over the intervening fifty years but the process has remained something of a mystery. There are three key length scales. The chain folded lamellar thickness is ~ 10nm, the crystal unit cell is ~ 1nm and the detail of the chain conformation is ~ 0.1nm. In previous work these length scales have been addressed using different instrumention or were coupled using compromised geometries. More recently researchers have attempted to exploit coupled time-resolved small-angle and wide-angle x-ray experiments. These turned out to be challenging experiments much related to the challenge of placing the scattering intensity on an absolute scale. However, they did stimulate the possibility of new phenomena in the very early stages of crystallisation. Although there is now considerable doubt on such experiments, they drew attention to the basic question as to the process of crystallisation in long chain molecules. We have used NIMROD on the second target station at ISIS to follow all three length scales in a time-resolving manner for poly(e-caprolactone). The technique can provide a single set of data from 0.01 to 100Å-1 on the same vertical scale. We present the results using a multiple scale model of the crystallisation process in polymers to analyse the results.
Resumo:
The wetting behavior of rhamnolipids produced by Pseudomonas aeruginosa LBI strain grown on waste oil substrate and sodium dodecyl sulfate (SDS) on glass, polyethylene terephthalate (PET), poly(vinyl chloride) (PVC), poly(epsilon-caprolactone) (PCL) and polymer blend (PVC-PCL) was investigated by the measuring contact angle of sessile drops, to determine the wetting characteristics of rhamnolipids. The comparison of the wetting profiles showed that at low SDS and rhamnolipid concentrations, the contact angle increased and when the concentration of the surfactant increased further, the contact angle decreased. The blend surface (PVC-PCL) showed better wettability than the homopolymers themselves and the blend changed the surface hydrophobicity of the polymer, making it more hydrophilic. The rhamnolipids produced by the LBI strain exhibited superior wetting abilities than the chemical surfactant SDS one. This is the first work that evaluates the wetting properties of rhamnolipids on polymer blends.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(epsilon-caprolactone) (PCL) PCL/PHBV (4:1) blend films were prepared by melt-pressing. The biodegradation of the films in response to burial in soil for 30 days was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG). The PHBV film was the most susceptible to microbial attack, since it was rapidly biodegraded via surface erosion in 15 days and completely degraded in 30 days. The PCL film also degraded but more slowly than PHBV. The degradation of the PCL/PHBV blend occurred in the PHBV phase, inducing changes in the PCL phases (interphase) and resulting in an increase of its crystalline fraction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biomateriais poliméricos são desenvolvidos para uso como substitutos de tecidos danificados e/ou estimular sua regeneração. Uma classe de biomateriais poliméricos são os biorreabsorvíveis, compostos que se decompõem tanto in vitro quanto in vivo. São empregados em tecidos que necessitam de um suporte temporário para sua recomposição tecidual. Dentre os vários polímeros biorreabsorvíveis, destacam-se os alfa-hidróxi ácidos, entre eles, diferentes composições do poli(ácido lático) (PLA), como o poli(L-ácido lático) (PLLA), poli(D-ácido lático) (PDLA), poli(DL-ácido lático) (PDLLA), além do poli(ácido glicólico) (PGA) e da policaprolactona (PCL). Estes polímeros são considerados biorreabsorvíveis por apresentarem boa biocompatibilidade e os produtos de sua decomposição serem eliminados do corpo por vias metabólicas. Diversas linhas de pesquisa mostram que os diferentes substratos à base de PLA estudados não apresentam toxicidade, uma vez que as células são capazes de crescer e proliferar sobre eles. Além disso, diversos tipos de células cultivadas sobre diferentes formas de PLA são capazes de se diferenciarem sobre os diferentes polímeros e passar a produzir componentes de matriz extracelular. Neste trabalho, é revisada a utilização de substratos à base de alfa-hidróxi ácidos, com destaque para diferentes formas de PLA, utilizados como substratos para cultura de células, bem como suas aplicações.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: The present study aimed to evaluate an injectable extended-release formulation of prednisolone acetate (PA) for orbital administration. Methods: Microspheres (MEs) of poly-ε-caprolactone (PCL) containing PA were developed by the method of solvent evaporation. The MEs obtained were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), encapsulation efficiency and in vitro release profile. The in vivo release profile was evaluated in rabbits after periocular injection of an aqueous suspension of MEs. The local biocompatibility of the system was verified by histopathologic analysis of the deployment region. Results: After MEs preparation, morphological analysis by SEM showed the feasibility of the employed method. The content of PA encapsulated was 43 ± 7% and can be considered as satisfactory. The system characterization by DSC technique, in addition to confirm the system stability, did not indicate the existence of interaction between the drug and the polymer. The in vitro release study showed the prolonged-release features of the developed system. Preliminary in vivo study showed the absence of local toxicity and confirmed the prolonged release profile of PA from MEs, suggesting the viability of the developed system for the treatment of orbital inflammatory diseases. Conclusion: The results obtained in this work are relevant and accredit the system developed as a possible alternative to the treatment of inflammatory orbitopathy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)