964 resultados para by-product upgrading
Resumo:
A Canopy Height Profile (CHP) procedure presented in Harding et al. (2001) for large footprint LiDAR data was tested in a closed canopy environment as a way of extracting vertical foliage profiles from LiDAR raw-waveform. In this study, an adaptation of this method to small-footprint data has been shown, tested and validated in an Australian sparse canopy forest at plot- and site-level. Further, the methodology itself has been enhanced by implementing a dataset-adjusted reflectance ratio calculation according to Armston et al. (2013) in the processing chain, and tested against a fixed ratio of 0.5 estimated for the laser wavelength of 1550nm. As a by-product of the methodology, effective leaf area index (LAIe) estimates were derived and compared to hemispherical photography-derived values. To assess the influence of LiDAR aggregation area size on the estimates in a sparse canopy environment, LiDAR CHPs and LAIes were generated by aggregating waveforms to plot- and site-level footprints (plot/site-aggregated) as well as in 5m grids (grid-processed). LiDAR profiles were then compared to leaf biomass field profiles generated based on field tree measurements. The correlation between field and LiDAR profiles was very high, with a mean R2 of 0.75 at plot-level and 0.86 at site-level for 55 plots and the corresponding 11 sites. Gridding had almost no impact on the correlation between LiDAR and field profiles (only marginally improvement), nor did the dataset-adjusted reflectance ratio. However, gridding and the dataset-adjusted reflectance ratio were found to improve the correlation between raw-waveform LiDAR and hemispherical photography LAIe estimates, yielding the highest correlations of 0.61 at plot-level and of 0.83 at site-level. This proved the validity of the approach and superiority of dataset-adjusted reflectance ratio of Armston et al. (2013) over a fixed ratio of 0.5 for LAIe estimation, as well as showed the adequacy of small-footprint LiDAR data for LAIe estimation in discontinuous canopy forests.
Resumo:
Recent investigations of the phenomenon of forgetting have been driven mostly by the development of a novel theoretical framework which places great emphasis on inhibitory control (Anderson, 2003; Anderson & Spellman, 1995; Bjork, 1989). Whereas traditional, interference-based theories consider forgetting to be a by-product of storing new information, the inhibitory framework postulates a specialized mechanism, or a group of mechanisms, that serves the function of ‘deactivating’ information which is currently irrelevant. This process of inhibiting currently irrelevant information is thought to have lasting consequences, affecting memory for the irrelevant information on subsequent tests. The active and functional perspective on forgetting embedded in the inhibitory framework opens new fields for examining the role of forgetting in cognitive functioning. Differences in the ability to inhibit irrelevant information have been postulated to play important roles in a range of clinical conditions (e.g., Soriano, Jiménez, Román, & Bajo, 2009; Storm & White, 2010) and the trajectory of cognitive development (e.g., Aslan & Bäuml, 2010) as well as contributing to individual differences in many other cognitive and social domains (Redick, Heitz, & Engle, 2007).
Resumo:
Proanthocyanindins (PAs) from shea meal (SM), a by-product obtained after lipid extraction of the nuts, contained B-type linkages, had a high ratio of prodelphinidins (73%) and were galloylated (42%). The average polymer size was 8 flavan-3-ol subunits (≈2384 Daltons) and epigallocatechin gallate was the major subunit. Purified PA fractions from SM were tested in vitro for anthelmintic properties against gastrointestinal nematodes from ruminants (H. contortus and T. colubriformis) [1] by the larval exsheathment inhibition assay and from pigs (A. suum) by the larval migration inhibition assay. Results showed that PAs from SM have a potent anthelmintic activity against those parasites similar to white clover (Trifolium repens) flowers (WCF) [1, 2] (EC50 µg/mL; SM: 55.1, 16.5, 75.9; WCF: 37.4, 14.5, 110.1 for A. suum, H. contortus and T. colubriformis respectively). WCF PAs are constituted almost exclusively of prodelphinidin (PD) compared to SM (98% vs. 73%) but do not contained galloylated PAs. Studies [1, 2] have shown that anthelmintic activity of PAs was mainly associated with their PD ratio but our current results suggest that galloylation can be a major factor to anthelmintic activity and SM as a potential nutraceutical anthelmintic feed for controlling parasitic nematodes.
Resumo:
Experimental results from the open literature have been employed for the design and techno-economic evaluation of four process flowsheets for the production of microbial oil or biodiesel. The fermentation of glucose-based media using the yeast strain Rhodosporidium toruloides has been considered. Biodiesel production was based on the exploitation of either direct transesterification (without extraction of lipids from microbial biomass) or indirect transesterifaction of extracted microbial oil. When glucose-based renewable resources are used as carbon source for an annual production capacity of 10,000 t microbial oil and zero cost of glucose (assuming development of integrated biorefineries in existing industries utilising waste or by-product streams) the estimated unitary cost of purified microbial oil is $3.4/kg. Biodiesel production via indirect transesterification of extracted microbial oil proved more cost-competitive process compared to the direct conversion of dried yeast cells. For a price of glucose of $400/t oil production cost and biodiesel production cost are estimated to be $5.5/kg oil and $5.9/kg biodiesel, correspondingly. Industrial implementation of microbial oil production from oleaginous yeast is strongly dependent on the feedstock used and on the fermentation stage where significantly higher productivities and final microbial oil concentrations should be achieved.
Resumo:
The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed
Resumo:
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not
Resumo:
Due to idiosyncrasies in their syntax, semantics or frequency, Multiword Expressions (MWEs) have received special attention from the NLP community, as the methods and techniques developed for the treatment of simplex words are not necessarily suitable for them. This is certainly the case for the automatic acquisition of MWEs from corpora. A lot of effort has been directed to the task of automatically identifying them, with considerable success. In this paper, we propose an approach for the identification of MWEs in a multilingual context, as a by-product of a word alignment process, that not only deals with the identification of possible MWE candidates, but also associates some multiword expressions with semantics. The results obtained indicate the feasibility and low costs in terms of tools and resources demanded by this approach, which could, for example, facilitate and speed up lexicographic work.
Resumo:
We study the mutual interaction between the dark sectors (dark matter and dark energy) of the Universe by resorting to the extended thermodynamics of irreversible processes and constrain the former with supernova type Ia data. As a by-product, the present dark matter temperature results are not extremely small and can meet the independent estimate of the temperature of the gas of sterile neutrinos.
Resumo:
A group is said to have the R(infinity) property if every automorphism has an infinite number of twisted conjugacy classes. We study the question whether G has the R(infinity) property when G is a finitely generated torsion-free nilpotent group. As a consequence, we show that for every positive integer n >= 5, there is a compact nilmanifold of dimension n on which every homeomorphism is isotopic to a fixed point free homeomorphism. As a by-product, we give a purely group theoretic proof that the free group on two generators has the R(infinity) property. The R(infinity) property for virtually abelian and for C-nilpotent groups are also discussed.
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this work cassava bagasse, a by-product of cassava starch industrialization was investigated as a new raw material to extract cellulose whiskers. This by-product is basically constituted of cellulose fibers (17.5 wt%) and residual starch (82 wt%). Therefore, this residue contains both natural fibers and a considerable quantity of starch and this composition suggests the possibility of using cassava bagasse to prepare both starch nanocrystals and cellulose whiskers. In this way, the preparation of cellulose whiskers was investigated employing conditions of sulfuric acid hydrolysis treatment found in the literature. The ensuing materials were characterized by transmission electron microscopy (TEM) and X-ray diffraction experiments. The results showed that high aspect ratio cellulose whiskers were successfully obtained. The reinforcing capability of cellulose whiskers extracted from cassava bagasse was investigated using natural rubber as matrix. High mechanical properties were observed from dynamic mechanical analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.
Resumo:
O aumento da produção de carvão previsto para os próximos anos nas minas da CRM localizadas em Leão, Butiá, RS, originará uma considerável quantidade de finos beneficiados por ciclonagem autôgena. Estes finos caracterizam-se pelos seus altos teores de umidade e granulometria <1 mm o que onera e dificulta os processos de manuseio, estocagem e transporte. O presente estudo visa à análise comparativa dos processos de aglomeração, a briquetagem e a pelotização com o objetivo de obter um produto com melhores características de comercialização do que o atual. As principais variáveis estudadas na aglomeração por briquetagem foram: teor de umidade, tipo e concentração de agente ligante, relação massa/volume de carvão, tempo e pressão de moldagem. Os melhores resultados em termos de resistência à compressão, foram obtidos utilizando um resíduo de refinaria de petróleo - REVAC - como ligante numa concentração de 10% em peso, uma temperatura de cura de 120° C, um tempo de moldagem de 0,5 minutos e uma pressão de compactação entre 150 e 250 kgf/cm². A pelotização foi estudada utilizando um tambor e um disco de laboratório e as principais variáveis estudadas foram: umidade da alimentação, tipo e concentração de agente ligante, temperatura de cura e outras. Os melhores resultados foram obtidos utilizando como ligante MOGUL (amido de milho pré-gelatinizado em pó) numa concentração de 5% em peso, uma faixa de umidade ótima entre 30 e 40%, uma inclinação do disco entre 45 e 51° e uma temperatura de cura de 80 e 100°C. Os resultados obtidos para ambos os carvões (CE 5900 e CE 4700) são discutidos em termos dos diversos fenômenos que ocorrem na interface carvão-solução-ligante e algumas considerações econômicas são apresentadas.