969 resultados para boolean polynomial
Resumo:
Efficient hardware implementations of arithmetic operations in the Galois field are highly desirable for several applications, such as coding theory, computer algebra and cryptography. Among these operations, multiplication is of special interest because it is considered the most important building block. Therefore, high-speed algorithms and hardware architectures for computing multiplication are highly required. In this paper, bit-parallel polynomial basis multipliers over the binary field GF(2(m)) generated using type II irreducible pentanomials are considered. The multiplier here presented has the lowest time complexity known to date for similar multipliers based on this type of irreducible pentanomials.
Resumo:
"Supported in part by ... Grant no. US NSF GP-9665."
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Bibliography: p. 14.
Resumo:
"Supported in part by Contract AT(11-1) 1018 with the U.S. Atomic Energy Commission and the Advanced Research Projects Agency."
Resumo:
Thesis (M.A.)--University of Illinois at Urbana-Champaign.
Resumo:
On cover: COO-1469-0077.
Resumo:
Bibliography: p. 16.
Resumo:
Vita: p. 105.
Resumo:
Includes bibliography.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.