865 resultados para bone density conservation agent
Resumo:
The World Health Organization fracture risk assessment tool, FRAX(®), is an advance in clinical care that can assist in clinical decision-making. However, with increasing clinical utilization, numerous questions have arisen regarding how to best estimate fracture risk in an individual patient. Recognizing the need to assist clinicians in optimal use of FRAX(®), the International Osteoporosis Foundation (IOF) in conjunction with the International Society for Clinical Densitometry (ISCD) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX(®) usage. As part of the process, the charge of the FRAX(®) Clinical Task Force was to review and synthesize data surrounding a number of recognized clinical risk factors including rheumatoid arthritis, smoking, alcohol, prior fracture, falls, bone turnover markers and glucocorticoid use. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the Clinical Task Force composition and charge is presented here.
Resumo:
Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions.
Resumo:
Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks. During the last 2 weeks, mice were treated daily with CRB-15 or an IgG2a control antibody. Intestinal inflammation, disease severity, and bone parameters were evaluated at days 14 and 21. CRB-15 improved survival, early weight loss, and colitis clinical score, although colon damage and inflammation were prevented in only half the survivors. CRB-15 also delayed loss of femur bone mineral density and trabecular microarchitecture. Bone loss was characterized by decreased bone formation, but increased bone marrow osteoclast progenitors and osteoclast numbers on bone surfaces. CRB-15 prevented the suppression of osteoblastic markers of bone formation, and reduced osteoclast progenitors at day 14, but not later. However, by day 21, CRB-15 decreased tumor necrosis factor α and increased IL-10 expression in bone, paralleling a reduction of osteoclasts. These results delineate the role of IL-15 on the systemic and skeletal manifestations of chronic colitis and provide a proof-of-concept for future therapeutic developments.
Resumo:
Hormone replacement therapy (HRT) is an established approach for the treatment and the prevention of osteoporosis. Many studies with bone mineral density as primary outcome have shown significant efficacy. Observational studies have indicated a significant reduction of hip fracture risk in cohorts of women who maintained HRT therapy. The Women's Health Initiative is the first prospective randomised controlled study which showed a positive effect of HRT in terms of reduction of vertebral and hip fractures risk. Unfortunately, this study has been interrupted after 5.2 years because of the unsupportable increase of risk of cardiovascular disease and breast cancer. Compliance with HRT, however, is typically poor because of the potential side effects and possible increased risk of breast or endometrial cancer. Nevertheless, there is now evidence that lower doses of estrogens in elderly women may prevent bone loss while minimizing the side effects seen with higher doses. Combination therapies using low doses estrogen should probably be reserved for patients who continue to fracture on single therapy. Selective estrogen receptor modulators (SERMs) are very interesting drugs. The goal of these agents is to maximize the beneficial effect of estrogen on bone and to minimize or antagonize the deleterious effects on the breast and endometrium. Raloxifene, approved for the prevention and the treatment of osteoporosis, has been shown to reduce the risks of vertebral fracture in large clinical trials. However, they don't reduce non vertebral fractures. Tibolone is a synthetic steroid that increased bone mineral density at lumbar spine and femoral neck. But no trial has been performed with fractures as end point.
Resumo:
We report on a series of 514 consecutive diagnoses of skeletal dysplasia made over an 8-year period at a tertiary hospital in Kerala, India. The most common diagnostic groups were dysostosis multiplex group (n = 73) followed by FGFR3 (n = 49) and osteogenesis imperfecta and decreased bone density group (n = 41). Molecular confirmation was obtained in 109 cases. Clinical and radiographic evaluation was obtained in close diagnostic collaboration with expert groups abroad through Internet communication for difficult cases. This has allowed for targeted biochemical and molecular studies leading to the correct identification of rare or novel conditions, which has not only helped affected families by allowing for improved genetic counseling and prenatal diagnosis but also resulted in several scientific contributions. We conclude that (1) the spectrum of genetic bone disease in Kerala, India, is similar to that of other parts of the world, but recessive entities may be more frequent because of widespread consanguinity; (2) prenatal detection of skeletal dysplasias remains relatively rare because of limited access to expert prenatal ultrasound facilities; (3) because of the low accessibility to molecular tests, precise clinical-radiographic phenotyping remains the mainstay of diagnosis and counseling and of gatekeeping to efficient laboratory testing; (4) good phenotyping allows, a significant contribution to the recognition and characterization of novel entities. We suggest that the tight collaboration between a local reference center with dedicated personnel and expert diagnostic networks may be a proficient model to bring current diagnostics to developing countries. © 2014 Wiley Periodicals, Inc.
Resumo:
Peripheral assessment of bone density using photon absorptiometry techniques has been available for over 40 yr. The initial use of radio-isotopes as the photon source has been replaced by the use of X-ray technology. A wide variety of models of single- or dual-energy X-ray measurement tools have been made available for purchase, although not all are still commercially available. The Official Positions of the International Society for Clinical Densitometry (ISCD) have been developed following a systematic review of the literature by an ISCD task force and a subsequent Position Development Conference. These cover the technological diversity among peripheral dual-energy X-ray absorptiometry (pDXA) devices; define whether pDXA can be used for fracture risk assessment and/or to diagnose osteoporosis; examine whether pDXA can be used to initiate treatment and/or monitor treatment; provide recommendations for pDXA reporting; and review quality assurance and quality control necessary for effective use of pDXA.
Resumo:
BACKGROUND/AIM: Raloxifene is the first selective estrogen receptor modulator that has been approved for the treatment and prevention of osteoporosis in postmenopausal women in Europe and in the US. Although raloxifene reduces the risk of invasive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer, it is approved in that indication in the US but not in the EU. The aim was to characterize the clinical profiles of postmenopausal women expected to benefit most from therapy with raloxifene based on published scientific evidence to date. METHODS: Key individual patient characteristics relevant to the prescription of raloxifene in daily practice were defined by a board of Swiss experts in the fields of menopause and metabolic bone diseases and linked to published scientific evidence. Consensus was reached about translating these insights into daily practice. RESULTS: Through estrogen agonistic effects on bone, raloxifene reduces biochemical markers of bone turnover to premenopausal levels, increases bone mineral density (BMD) at the lumbar spine, proximal femur, and total body, and reduces vertebral fracture risk in women with osteopenia or osteoporosis with and without prevalent vertebral fracture. Through estrogen antagonistic effects on breast tissue, raloxifene reduces the risk of invasive estrogen-receptor positive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer. Finally, raloxifene increases the incidence of hot flushes, the risk of venous thromboembolic events, and the risk of fatal stroke in postmenopausal women at increased risk for coronary heart disease. Postmenopausal women in whom the use of raloxifene is considered can be categorized in a 2 × 2 matrix reflecting their bone status (osteopenic or osteoporotic based on their BMD T-score by dual energy X-ray absorptiometry) and their breast cancer risk (low or high based on the modified Gail model). Women at high risk of breast cancer should be considered for treatment with raloxifene. CONCLUSION: Postmenopausal women between 50 and 70 years of age without climacteric symptoms with either osteopenia or osteoporosis should be evaluated with regard to their breast cancer risk and considered for treatment with raloxifene within the framework of its contraindications and precautions.
Resumo:
Determination of the sub-chondral bone density, or more precisely the internal density spot, can be used to evaluate the capability of a knee to sustain normal kinematics. To use this technique as a mean of knee kinematics control, the position of the internal density spot must be determined in a reproducible way. This paper presents a definition of an intrinsic polar coordinate system, allowing to measure the position of the internal density spot of the tibial plateau. Tests of reproducibility gave good results and justify the use of this coordinate system for comparison of the internal density spot position between left and right paired knees.
Resumo:
Rheumatoid arthritis is the only secondary cause of osteoporosis that is considered independent of bone density in the FRAX(®) algorithm. Although input for rheumatoid arthritis in FRAX(®) is a dichotomous variable, intuitively, one would expect that more severe or active disease would be associated with a greater risk for fracture. We reviewed the literature to determine if specific disease parameters or medication use could be used to better characterize fracture risk in individuals with rheumatoid arthritis. Although many studies document a correlation between various parameters of disease activity or severity and decreased bone density, fewer have associated these variables with fracture risk. We reviewed these studies in detail and concluded that disability measures such as HAQ (Health Assessment Questionnaire) and functional class do correlate with clinical fractures but not morphometric vertebral fractures. One large study found a strong correlation with duration of disease and fracture risk but additional studies are needed to confirm this. There was little evidence to correlate other measures of disease such as DAS (disease activity score), VAS (visual analogue scale), acute phase reactants, use of non-glucocorticoid medications and increased fracture risk. We concluded that FRAX(®) calculations may underestimate fracture probability in patients with impaired functional status from rheumatoid arthritis but that this could not be quantified at this time. At this time, other disease measures cannot be used for fracture prediction. However only a few, mostly small studies addressed other disease parameters and further research is needed. Additional questions for future research are suggested.
Resumo:
CONTEXT: The Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) extension is evaluating the long-term efficacy and safety of denosumab for up to 10 years. OBJECTIVE: The objective of the study was to report results from the first 3 years of the extension, representing up to 6 years of denosumab exposure. DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter, international, open-label study of 4550 women. INTERVENTION: Women from the FREEDOM denosumab group received 3 more years of denosumab for a total of 6 years (long-term) and women from the FREEDOM placebo group received 3 years of denosumab (crossover). MAIN OUTCOME MEASURES: Bone turnover markers (BTMs), bone mineral density (BMD), fracture, and safety data are reported. RESULTS: Reductions in BTMs were maintained (long-term) or achieved rapidly (crossover) after denosumab administration. In the long-term group, BMD further increased for cumulative 6-year gains of 15.2% (lumbar spine) and 7.5% (total hip). During the first 3 years of denosumab treatment, the crossover group had significant gains in lumbar spine (9.4%) and total hip (4.8%) BMD, similar to the long-term group during the 3-year FREEDOM trial. In the long-term group, fracture incidences remained low and below the rates projected for a virtual placebo cohort. In the crossover group, 3-year incidences of new vertebral and nonvertebral fractures were similar to those of the FREEDOM denosumab group. Incidence rates of adverse events did not increase over time. Six participants had events of osteonecrosis of the jaw confirmed by adjudication. One participant had a fracture adjudicated as consistent with atypical femoral fracture. CONCLUSION: Denosumab treatment for 6 years remained well tolerated, maintained reduced bone turnover, and continued to increase BMD. Fracture incidence remained low.
Resumo:
PURPOSE: We hypothesize that untrained subjects can benefit from a greater cardiovascular stimulation than trained athletes, resembling classical aerobic-type activity, in addition to eliciting strength gains.METHODS: 3 groups of male subjects, inactive (SED), endurance trained (END) and strength trained (STR) underwent fitness (VO2max) and lower-body strength tests (isokinetic). Subjects were submitted to a session of oscillating VT, composed of 3 exercises (isometric half-squat, dynamic squat, dynamic squat with added load), each of 3 minutes duration, and repeated at 3 vibration frequencies (20, 26 and 32 Hz). VO2, heart rate and Borg scale were monitored.RESULTS: 27 healthy subjects (10 SED, 9 END and 8 STR), mean age 24.5 (SED), 25.0 (STR) and 29.8 (END) were included. VO2max was significantly different as expected (47.9 vs. 52.9 vs. 63.9 mL?min-1?kg-1, resp. for SED, STR and END). Isokinetic dominant leg extensors strength was higher in STR (3.32 N?m?kg-1 vs. 2.60 and 2.74 in SED and END). During VT, peak oxygen consumption (% of VO2max) attained was 59.3 in SED, 50.8 in STR and 48.0 in END (P<0.001 between SED and other subjects). Peak heart rate (% of heart rate max) was 82.7 in SED, 80.4 in STR and 72.4 in END. In SED, dynamic exercises without extra load elicited 51.0 % of VO2max and 72.1 % of heart rate max, and perceived effort reached 15.1/20.CONCLUSIONS: VT is an unconventional type of exercise, known to enhance strength, bone density, balance and flexibility. Users are attracted by the relative passivity. In SED, VT elicits sufficient cardiovascular response to benefit overall fitness in addition to the strength effects. VT's higher acceptance as an exercise in sedentary people, compared to jogging or cycling, can lead to better adherence to physical activity. Although long-term effects of VT on health are not available, we believe this type of mixed aerobic and resistance-type exercise can be beneficial on multiple health parameters, especially cardiovascular health.
Resumo:
Dual-energy X-ray absorptiometry (DXA) is commonly used in the care of patients for diagnostic classification of osteoporosis, low bone mass (osteopenia), or normal bone density; assessment of fracture risk; and monitoring changes in bone density over time. The development of other technologies for the evaluation of skeletal health has been associated with uncertainties regarding their applications in clinical practice. Quantitative ultrasound (QUS), a technology for measuring properties of bone at peripheral skeletal sites, is more portable and less expensive than DXA, without the use of ionizing radiation. The proliferation of QUS devices that are technologically diverse, measuring and reporting variable bone parameters in different ways, examining different skeletal sites, and having differing levels of validating data for association with DXA-measured bone density and fracture risk, has created many challenges in applying QUS for use in clinical practice. The International Society for Clinical Densitometry (ISCD) 2007 Position Development Conference (PDC) addressed clinical applications of QUS for fracture risk assessment, diagnosis of osteoporosis, treatment initiation, monitoring of treatment, and quality assurance/quality control. The ISCD Official Positions on QUS resulting from this PDC, the rationale for their establishment, and recommendations for further study are presented here.
Resumo:
Pycnodysostosis is a rare clinical entity, first described in 1962 by Maroteaux and Lamy. It is a genetic disorder, usually diagnosed at an early age. However, the diagnosis is sometimes late, made as a result of bone fracture, given the severe bone fragility resulting from increased bone density. Oral and maxillofacial manifestations of this disease are very clear. The head is usually large, the nose beaked, the mandibular angle obtuse, and both maxilla and mandible hypoplastic. Dental abnormalities and impaction are observed, as well as alterations in eruption and frequent dental crowding. The differential diagnosis is established with osteopetrosis, cleidocranial dysplasia and idiopathic acro-osteolysis. This article reviews the clinical and radiographic characteristics of pycnodysostosis based on three clinical cases of patients with this disease.
Resumo:
The best indirect evidence that increased bone turnover contributes to fracture risk is the fact that most of the proven therapies for osteoporosis are inhibitors of bone turnover. The evidence base that we can use biochemical markers of bone turnover in the assessment of fracture risk is somewhat less convincing. This relates to natural variability in the markers, problems with the assays, disparity in the statistical analyses of relevant studies and the independence of their contribution to fracture risk. More research is clearly required to address these deficiencies before biochemical markers might contribute a useful independent risk factor for inclusion in FRAX(®).
Resumo:
Fractures due to osteoporosis are one of the major complications after heart transplantation, occurring mostly during the first 6 months after the graft, with an incidence ranging from 18% to 50% for vertebral fractures. Bone mineral density (BMD) decreases dramatically following the graft, at trabecular sites as well as cortical sites. This is explained by the relatively high doses of glucocorticoids used during the months following the graft, and by a long-term increase of bone turnover which is probably due to cyclosporine. There is some evidence for a beneficial effect on BMD of antiresorptive treatments after heart transplantation. The aim of this study was to assess prospectively the effect on BMD of a 3-year treatment of quarterly infusions of 60 mg of pamidronate, combined with 1 g calcium and 1000 U vitamin D per day, in osteoporotic heart transplant recipients, and that of a treatment with calcium and vitamin D in heart transplant recipients with no osteoporosis. BMD of the lumbar spine and the femoral neck was measured by dual-energy X-ray absorptiometry in all patients every 6 months for 2 years and after 3 years. Seventeen patients, (1 woman, 16 men) aged 46+/-4 years (mean +/- SEM) received only calcium and vitamin D. A significant decrease in BMD was observed after 6 months following the graft, at the lumbar spine (- 6.6%) as well as at the femoral neck (-7.8%). After 2 years, BMD tended to recover at the lumbar spine, whereas the loss persisted after 3 years at the femoral neck. Eleven patients (1 woman and 10 men) aged 46+/-4 years (mean +/- SEM) started treatment with pamidronate on average 6 months after the graft, because they had osteoporosis of the lumbar spine and/or femoral neck (BMD T-score below -2.5 SD). Over the whole treatment period, a continuous increase in BMD at the lumbar spine was noticed, reaching 18.3% after 3 years (14.3% compared with the BMD at the time of the graft). BMD at the femoral neck was lowered in the first year by -3.4%, but recovered totally after 3 years of treatment. In conclusion, a 3-year study of treatment with pamidronate given every 3 months to patients with existing osteoporosis led to a significant increase in lumbar spine BMD and prevented loss at the femoral neck. However, since some of these patients were treated up to 14 months after the transplant, they may already have passed through the phase of most rapid bone loss. In patients who were not osteoporotic at baseline, treatment with calcium and vitamin D alone was not able to prevent the rapid bone loss that occurs immediately after transplantation.