951 resultados para air-liquid interface


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulations of turbulent driven flow in a dense medium cyclone with magnetite medium have been conducted using Fluent. The predicted air core shape and diameter were found to be close to the experimental results measured by gamma ray tomography. It is possible that the Large eddy simulation (LES) turbulence model with Mixture multi-phase model can be used to predict the air/slurry interface accurately although the LES may need a finer grid. Multi-phase simulations (air/water/medium) are showing appropriate medium segregation effects but are over-predicting the level of segregation compared to that measured by gamma-ray tomography in particular with over prediction of medium concentrations near the wall. Further, investigated the accurate prediction of axial segregation of magnetite using the LES turbulence model together with the multi-phase mixture model and viscosity corrections according to the feed particle loading factor. Addition of lift forces and viscosity correction improved the predictions especially near the wall. Predicted density profiles are very close to gamma ray tomography data showing a clear density drop near the wall. The effect of size distribution of the magnetite has been fully studied. It is interesting to note that the ultra-fine magnetite sizes (i.e. 2 and 7 mu m) are distributed uniformly throughout the cyclone. As the size of magnetite increases, more segregation of magnetite occurs close to the wall. The cut-density (d(50)) of the magnetite segregation is 32 gm, which is expected with superfine magnetite feed size distribution. At higher feed densities the agreement between the [Dungilson, 1999; Wood, J.C., 1990. A performance model for coal-washing dense medium cyclones, Ph.D. Thesis, JKMRC, University of Queensland] correlations and the CFD are reasonably good, but the overflow density is lower than the model predictions. It is believed that the excessive underflow volumetric flow rates are responsible for under prediction of the overflow density. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in situ real time measurement of the regression rate of a melting interface (RRMI) is performed by the ultrasonic measurement system reported here. The RRMI is the rate at which a solid/liquid interface (SLI) moves along a metallic rod while burning in an oxygen-enriched atmosphere and is an important flatnmability indicator. The ultrasonic transducer and associated equipment used to drive the transducer and record the echo signal is described, along with the process that transforms the acquired signals into a RRMI value. Test rods of various metals and geometric shapes were burned at several test conditions in different test facilities. The RRMI results with quantified errors are presented and reviewed. The effect of reduced gravity on burning metals is important to space-applications and RRMI results obtained in a reduced gravity environment are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Surfactant proteins A, B, C and D complex with (phospho)lipids to produce surfactants which provide low interfacial tensions. It is likely that similar complexation occurs in the tear film and contributes to its low surface tension. Synthetic protein-phospholipid complexes, with styrene maleic anhydrides (SMAs) as the protein analogue, have been shown to have similarly low surface tensions. This study investigates the potential of modified SMAs and/or SMA-phospholipid complexes, which form under physiological conditions, to supplement natural tear film surfactants. Method: SMAs were modified to provide structural variants which can form complexes under varying conditions. Infrared spectroscopy and Nuclear Magnetic Resonance were used to confirm SMA structure. Interfacial behaviour of the SMA and SMA-phospholipid complexes was studied using Langmuir trough, du Nûoy ring and pulsating bubblemethods. Factors which affect SMA-phospholipid complex formation, such as temperature and pH, were also investigated. Results: Structural manipulation of SMAs allows control over complex formation, including under physiological conditions (e.g. partial SMAesterfication allowed complexation with dimyristoylphosphatidylcholine, at pH7). The low surface tensions of the SMAs (42mN/m for static (du Nûoy ring) and 34mN/m for dynamic (Langmuir) techniques) demonstrate their surface activity at the air-aqueous interface. SMA-phospholipid complexes provide even lower surface tensions (~2 mN/m), approaching that of lung surfactant, as measured by the pulsating bubblemethod. Conclusions: Design of the molecular architecture of SMAs allows control over their surfactant properties. These SMAs could be used as novel tear films supplements, either alone to complex with native tear film phospholipids or delivered as synthetic protein-phospholipid complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The internationally accepted Wolfson Heat Treatment Centre Engineering Group test was used to evaluate the cooling characteristics of the most popular commercial polymer quenchants: polyalkylene glycols, polyvinylpyrrolidones and polyacrylates. Prototype solutions containing poly(ethyloxazoline) were also examined. Each class of polymer was capable of providing a wide range of cooling rates depending on the product formulation, concentration, temperature, agitation, ageing and contamination. Cooling rates for synthetic quenchants were generally intermediate between those of water and oil. Control techniques, drag-out losses and response to quenching in terms of hardness and residual stress for a plain carbon steel, were also considered. A laboratory scale method for providing a controllable level of forced convection was developed. Test reproducibility was improved by positioning the preheated Wolfson probe 25mm above the geometric centre of a 25mm diameter orifice through which the quenchant was pumped at a velocity of 0.5m/s. On examination, all polymer quenchants were found to operate by the same fundamental mechanism associated with their viscosity and ability to form an insulating polymer-rich-film. The nature of this film, which formed at the vapour/liquid interface during boiling, was dependent on the polymer's solubility characteristics. High molecular weight polymers and high concentration solutions produced thicker, more stable insulating films. Agitation produced thinner more uniform films. Higher molecular weight polymers were more susceptible to degradation, and increased cooling rates, with usage. Polyvinylpyrrolidones can be cross-linked resulting in erratic performance, whilst the anionic character of polyacrylates can lead to control problems. Volatile contaminants tend to decrease the rate of cooling and salts to increase it. Drag-out increases upon raising the molecular weight of the polymer and its solution viscosity. Kinematic viscosity measurements are more effective than refractometer readings for concentration control, although a quench test is the most satisfactory process control method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of nonionic surface active agents of polyoxyethylene glycol monoethers of n hexadecanols on polystyrene latex and nonionic cellulose polymers of hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose on polystyrene latex and ibuprofen drug particles have been studied. The adsorbed layer thicknesses were determined by means of microelectrophoretic and viscometric methods. The conformation of the adsorbed molecules at the solid-liquid interface was deduced from the molecular areas and the adsorbed layer thicknesses. Comparison of the adsorption results obtained from polystyrene latex and ibuprofen particles was made to explain the conformation difference between these two adsorbates. Sedimentation volumes and redispersibility values were the main criteria used to evaluate suspension stability. At low concentrations of surface active agents, hard caked suspensions were found, probably due to the attraction between the uncoated areas or, the mutual adsorption of the adsorbed molecules on the bare surface of the particles in the sediment. At high concentrations of hydroxypropyl cellulose and hydroxypropyl methylcellulose, heavily caked sediments were attributed to network structure formation by the adsorbed molecules. An attempt was made to relate the characteristics of the suspensions to the potential energy of interaction curves. Generally, the agreement between theory and experiment was good, but for hydroxyethyl cellulose-ibuprofen systems discrepancies were found. Experimental studies showed that hydroxyethyl cellulose flocculated polystyrene latex over a rather wide range of concentrations; similarly, hydroxyethyl cellulose-ibuprofen suspensions were also flocculated. Therefore, it ls suggested that a term to account for flocculation energy of the polymer should be added to the total energy of interaction. A rheometric method was employed to study the flocculation energy of the polymer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review of the literature pertaining to the mechanical properties, solidification and segregation effects in nodular cast iron has been made. A series of investigations concerning the influence of microsegregation on mechanical properties of :pearlitic, ferritic and austenitic nodular cast iron have then been reported. The influence of section size on the tensile and impact properties of cornmercial purity and refined ferritic nodular cast iron has been studied. It has been shown. that an increase in section caused a decrease in impact transition temperature of the commercial purity material without greatly affecting the impact transition temperature of the purer material. This effect has been related to increased amounts of segregation effects such as cell boundary carbides in heavier sections of the commercial purity material. Microsegregation studies on the materials used in this thesis have been carried out using an electron probe microanalyser. This technique has shown that concentrations of chromium and manganese and depletions of nickel and silicon occurred at eutectic cell boundaries in nodular cast iron and were often associated with brittle carbides in these areas. These effects have been shown to be more prevalent in heavier sections. The nature of segregation during the solidification of nodular cast iron has been studied by quenching samples of nodular iron during the solidification process. Micro-analysis of such samples has shown that segregation of manganese and chromium occurs by a gradual build-up of these elements at the solid/liquid interface. The microstructures of the quenched specimens revealed carbide filaments connecting graphite nodules and areas of quenched liquid. These filaments have been used as evidence for a revised hypothesis for the solidification of nodular cast iron by a liquid diffusion mechanism. A similar series of experiments has been carried out on two high nickel austenitic irons containing 0.5 per cent manganese and 4 per cent manganese respectively. In both these materials a decrease in elongation was experienced with increasing section. This effect was more drastic in the 4 per cent manganese material which also contained much greater amounts of cell boundary carbide in heavy sections. Micro-analysis of samples of the 4 per cent manganese material quenched during solidification revealed that manganese concentrated in the liquid and that nickel concentrated in the solid during solidification. No segregation of silicon occurred in this material. Carbide filaments appeared in the microstructures of these specimens. A discussion of all the above effects in terms of current concepts is included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a novel experimental study of a pH-responsive polyelectrolyte brush at the silicon/D2O interface. A poly[2-(diethylamino)ethyl methacrylate] brush was grown on a large silicon crystal which acted as both a substrate for a neutron reflectivity solid/liquid experiment but also as an FTIR-ATR spectroscopy crystal. This arrangement has allowed for both neutron reflectivities and FTIR spectroscopic information to be measured in parallel. The chosen polybase brush shows strong IR bands which can be assigned to the N-D+ stretch, D2O, and a carbonyl group. From such FTIR data, we are able to closely monitor the degree of protonation along the polymer chain as well as revealing information concerning the D2O concentration at the interface. The neutron reflectivity data allows us to determine the physical brush profile normal to the solid/liquid interface along with the corresponding degree of hydration. This combined approach makes it possible to quantify the charge on a polymer brush alongside the morphology adopted by the polymer chains. © 2013 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La modélisation de la cryolite, utilisée dans la fabrication de l’aluminium, implique plusieurs défis, notament la présence de discontinuités dans la solution et l’inclusion de la difference de densité entre les phases solide et liquide. Pour surmonter ces défis, plusieurs éléments novateurs ont été développés dans cette thèse. En premier lieu, le problème du changement de phase, communément appelé problème de Stefan, a été résolu en deux dimensions en utilisant la méthode des éléments finis étendue. Une formulation utilisant un multiplicateur de Lagrange stable spécialement développée et une interpolation enrichie a été utilisée pour imposer la température de fusion à l’interface. La vitesse de l’interface est déterminée par le saut dans le flux de chaleur à travers l’interface et a été calculée en utilisant la solution du multiplicateur de Lagrange. En second lieu, les effets convectifs ont été inclus par la résolution des équations de Stokes dans la phase liquide en utilisant la méthode des éléments finis étendue aussi. Troisièmement, le changement de densité entre les phases solide et liquide, généralement négligé dans la littérature, a été pris en compte par l’ajout d’une condition aux limites de vitesse non nulle à l’interface solide-liquide pour respecter la conservation de la masse dans le système. Des problèmes analytiques et numériques ont été résolus pour valider les divers composants du modèle et le système d’équations couplés. Les solutions aux problèmes numériques ont été comparées aux solutions obtenues avec l’algorithme de déplacement de maillage de Comsol. Ces comparaisons démontrent que le modèle par éléments finis étendue reproduit correctement le problème de changement phase avec densités variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exchanges between lakes and the atmosphere at Alqueva reservoir, Southeast Portugal, are the object of a 2014 Summer experiment described in this work, with special attention to above water, air-water interface and below water measurements. Air-water interface momentum, heat and mass (H 2 O and CO 2 ) fluxes are obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO 2 /H 2 O Gas Analyser and 3D Sonic Anemometer with a unique design that contains no special displacement between the sample volumes of the gas analyser and the sonic anemometer. The radiative balance, both in short and long wave, is assessed with an albedometer and a pirradiometer. Water temperature profile is also continuously recorded. In-water solar spectral downwelling irradiance profiles are measured which enable the computation of the attenuation coefficient of light in the water column. Thus, with detailed information of the Lake-Atmosphere interactions, it is possible to determine the energy and mass balance of the lake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Woven monofilament, multifilament, and spun yarn filter media have long been the standard media in liquid filtration equipment. While the energy for a solid-liquid separation process is determined by the engineering work, it is the interface between the slurry and the equipment - the filter media - that greatly affects the performance characteristics of the unit operation. Those skilled in the art are well aware that a poorly designed filter medium may endanger the whole operation, whereas well-performing filter media can make the operation smooth and economical. As the mineral and pulp producers seek to produce ever finer and more refined fractions of their products, it is becoming increasingly important to be able to dewater slurries with average particle sizes around 1 ¿m using conventional, high-capacity filtration equipment. Furthermore, the surface properties of the media must not allow sticky and adhesive particles to adhere to the media. The aim of this thesis was to test how the dirt-repellency, electrical resistance and highpressure filtration performance of selected woven filter media can be improved by modifying the fabric or yarn with coating, chemical treatment and calendering. The results achieved by chemical surface treatments clearly show that the woven media surface properties can be modified to achieve lower electrical resistance and improved dirt-repellency. The main challenge with the chemical treatments is the abrasion resistance and, while the experimental results indicate that the treatment is sufficiently permanent to resist standard weathering conditions, they may still prove to be inadequately strong in terms of actual use.From the pressure filtration studies in this work, it seems obvious that the conventional woven multifilament fabrics still perform surprisingly well against the coated media in terms of filtrate clarity and cake build-up. Especially in cases where the feed slurry concentration was low and the pressures moderate, the conventional media seemed to outperform the coated media. In the cases where thefeed slurry concentration was high, the tightly woven media performed well against the monofilament reference fabrics, but seemed to do worse than some of the coated media. This result is somewhat surprising in that the high initial specific resistance of the coated media would suggest that the media will blind more easily than the plain woven media. The results indicate, however, that it is actually the woven media that gradually clogs during the coarse of filtration. In conclusion, it seems obvious that there is a pressure limit above which the woven media looses its capacity to keep the solid particles from penetrating the structure. This finding suggests that for extreme pressures the only foreseeable solution is the coated fabrics supported by a strong enough woven fabric to hold thestructure together. Having said that, the high pressure filtration process seems to follow somewhat different laws than the more conventional processes. Based on the results, it may well be that the role of the cloth is most of all to support the cake, and the main performance-determining factor is a long life time. Measuring the pore size distribution with a commercially available porometer gives a fairly accurate picture of the pore size distribution of a fabric, but failsto give insight into which of the pore sizes is the most important in determining the flow through the fabric. Historically air, and sometimes water, permeability measures have been the standard in evaluating media filtration performance including particle retention. Permeability, however, is a function of a multitudeof variables and does not directly allow the estimation of the effective pore size. In this study a new method for estimating the effective pore size and open pore area in a densely woven multifilament fabric was developed. The method combines a simplified equation of the electrical resistance of fabric with the Hagen-Poiseuille flow equation to estimate the effective pore size of a fabric and the total open area of pores. The results are validated by comparison to the measured values of the largest pore size (Bubble point) and the average pore size. The results show good correlation with measured values. However, the measured and estimated values tend to diverge in high weft density fabrics. This phenomenon is thought to be a result of a more tortuous flow path of denser fabrics, and could most probably be cured by using another value for the tortuosity factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.