938 resultados para Voltage compensators
Resumo:
We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.
Resumo:
Multiple Clock Domain processors provide an attractive solution to the increasingly challenging problems of clock distribution and power dissipation. They allow their chips to be partitioned into different clock domains, and each domain’s frequency (voltage) to be independently configured. This flexibility adds new dimensions to the Dynamic Voltage and Frequency Scaling problem, while providing better scope for saving energy and meeting performance demands. In this paper, we propose a compiler directed approach for MCD-DVFS. We build a formal petri net based program performance model, parameterized by settings of microarchitectural components and resource configurations, and integrate it with our compiler passes for frequency selection.Our model estimates the performance impact of a frequency setting, unlike the existing best techniques which rely on weaker indicators of domain performance such as queue occupancies(used by online methods) and slack manifestation for a particular frequency setting (software based methods).We evaluate our method with subsets of SPECFP2000,Mediabench and Mibench benchmarks. Our mean energy savings is 60.39% (versus 33.91% of the best software technique)in a memory constrained system for cache miss dominated benchmarks, and we meet the performance demands.Our ED2 improves by 22.11% (versus 18.34%) for other benchmarks. For a CPU with restricted frequency settings, our energy consumption is within 4.69% of the optimal.
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control, using only inverter switching state redundancies. The proposed power circuit gives a simple power bus structure.
Resumo:
Energy consumption has become a major constraint in providing increased functionality for devices with small form factors. Dynamic voltage and frequency scaling has been identified as an effective approach for reducing the energy consumption of embedded systems. Earlier works on dynamic voltage scaling focused mainly on performing voltage scaling when the CPU is waiting for memory subsystem or concentrated chiefly on loop nests and/or subroutine calls having sufficient number of dynamic instructions. This paper concentrates on coarser program regions and for the first time uses program phase behavior for performing dynamic voltage scaling. Program phases are annotated at compile time with mode switch instructions. Further, we relate the Dynamic Voltage Scaling Problem to the Multiple Choice Knapsack Problem, and use well known heuristics to solve it efficiently. Also, we develop a simple integer linear program formulation for this problem. Experimental evaluation on a set of media applications reveal that our heuristic method obtains a 38% reduction in energy consumption on an average, with a performance degradation of 1% and upto 45% reduction in energy with a performance degradation of 5%. Further, the energy consumed by the heuristic solution is within 1% of the optimal solution obtained from the ILP approach.
Resumo:
In the recent years, there has been a trend to run metallic pipelines carrying petroleum products and high voltage AC power lines parallel to each other in a relatively narrow strip of land. Due to this sharing of the right-of-way, verhead AC power line electric field may induce voltages on the metallic pipelines running in close vicinity leading to serious adverse effects. In this paper, the induced voltages on metallic pipelines running in close vicinity of high voltage power transmission lines have been computed. Before computing the induced voltages, an optimum configuration of the phase conductors based on the lowest conductor surface gradient and field under transmission line has been arrived at. This paper reports the conductor surface field gradients calculated for the various configurations. Also the electric fields under transmission line, for single circuit and double circuit (various phase arrangements) have been analyzed. Based on the above results, an optimum configuration giving the lowest field under the power line as well as the lowest conductor surface gradient has been arrived at and for this configuration, induced voltage on the pipeline has been computed using the Charge Simulation Method (CSM). For comparison, induced voltages on the pipeline has been computed for the various other phase configurations also.
Resumo:
With the emergence of voltage scaling as one of the most powerful power reduction techniques, it has been important to support voltage scalable statistical static timing analysis (SSTA) in deep submicrometer process nodes. In this paper, we propose a single delay model of logic gate using neural network which comprehensively captures process, voltage, and temperature variation along with input slew and output load. The number of simulation programs with integrated circuit emphasis (SPICE) required to create this model over a large voltage and temperature range is found to be modest and 4x less than that required for a conventional table-based approach with comparable accuracy. We show how the model can be used to derive sensitivities required for linear SSTA for an arbitrary voltage and temperature. Our experimentation on ISCAS 85 benchmarks across a voltage range of 0.9-1.1V shows that the average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.85%. The errors in predicting the 99% and 1% probability point are 1.31% and 1%, respectively, with respect to SPICE. The two potential applications of voltage-aware SSTA have been presented, i.e., one for improving the accuracy of timing analysis by considering instance-specific voltage drops in power grids and the other for determining optimum supply voltage for target yield for dynamic voltage scaling applications.
Resumo:
Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
It is possible to prepare low‐voltage varistors from the zinc antimony spinel Zn7Sb2O12 with breakdown voltages in the range of 3–20 V and nonlinearity coefficient α=7–15. The varistor property is due to the formation of high ohmic potential barriers at the grain boundary regions on low‐ohmic n‐type grain interiors of the polycrystalline samples. The method of preparation of the spinel, synthesized by coprecipitation followed by annealing under restricted partial pressures of oxygen, controls the mixed valence states for antimony, namely, Sb3+ and Sb5+. This is critical in attaining high nonlinearity and lower breakdown voltages.
Resumo:
A method of precise measurement of on-chip analog voltages in a mostly-digital manner, with minimal overhead, is presented. A pair of clock signals is routed to the node of an analog voltage. This analog voltage controls the delay between this pair of clock signals, which is then measured in an all-digital manner using the technique of sub-sampling. This sub-sampling technique, having measurement time and accuracy trade-off, is well suited for low bandwidth signals. This concept is validated by designing delay cells, using current starved inverters in UMC 130nm CMOS process. Sub-mV accuracy is demonstrated for a measurement time of few seconds.