964 resultados para Two dimensions
Resumo:
Bose-Einstein condensation (BEC) in two dimensions (2D) (e.g., to describe the quasi-2D cuprates) is suggested as the possible mechanism widely believed to underlie superconductivity in general. A crucial role is played by nonzero center-of-mass momentum Cooper pairs (CPs) usually neglected in BCS theory. Also vital is the unique linear dispersion relation appropriate to weakly-coupled bosonic CPs moving in the Fermi sea-rather than in vacuum where the dispersion would be quadratic but only for very strong coupling, and for which BEC is known to be impossible in 2D.
Resumo:
Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by, Greiner et al. [Nature (London 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three. (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
We study the noncommutative generalization of (Euclidean) integrable models in two dimensions, specifically the sine- and sinh-Gordon and the U(N) principal chiral models. By looking at tree-level amplitudes for the sinh-Gordon model we show that its naive noncommutative generalization is not integrable. on the other hand, the addition of extra constraints, obtained through the generalization of the zero-curvature method, renders the model integrable. We construct explicit nonlocal nontrivial conserved charges for the U(N) principal chiral model using the Brezin-Itzykson-Zinn-Justin-Zuber method. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.
Resumo:
Este trabalho aborda elementos relativos às dimensões dos valores e da participação política, desenvolvidos por professoras, quando da elaboração de projetos temáticos sobre resíduos sólidos. A análise representa um momento da investigação dos processos de educação continuada de professoras de séries iniciais do Ensino Fundamental, de São Carlos, SP, ao aprender e ensinar conteúdos relativos à temática ambiental, com foco nos resíduos sólidos. Apontamos na discussão dos dados que as professoras freqüentemente não reconhecem os limites da dimensão dos conhecimentos, o que provavelmente dificulta a percepção das possibilidades de desenvolvimento do trabalho com as dimensões dos valores éticos e da participação política. Analisamos, para estas dimensões, alguns aspectos que se destacaram na pesquisa realizada.
Resumo:
A parallel technique, for a distributed memory machine, based on domain decomposition for solving the Navier-Stokes equations in cartesian and cylindrical coordinates in two dimensions with free surfaces is described. It is based on the code by Tome and McKee (J. Comp. Phys. 110 (1994) 171-186) and Tome (Ph.D. Thesis, University of Strathclyde, Glasgow, 1993) which in turn is based on the SMAC method by Amsden and Harlow (Report LA-4370, Los Alamos Scientific Laboratory, 1971), which solves the Navier-Stokes equations in three steps: the momentum and Poisson equations and particle movement, These equations are discretized by explicit and 5-point finite differences. The parallelization is performed by splitting the computation domain into vertical panels and assigning each of these panels to a processor. All the computation can then be performed using nearest neighbour communication. Test runs comparing the performance of the parallel with the serial code, and a discussion of the load balancing question are presented. PVM is used for communication between processes. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.
Resumo:
College student burnout has been assessed mainly with the Maslach Burnout Inventory (MBI). However, the construct's definition and measurement with MBI has drawn several criticisms and new inventories have been suggested for the evaluation of the syndrome. A redefinition of the construct of student burnout is proposed by means of a structural equation model, reflecting burnout as a second order factor defined by factors from the MBI-Student Survey (MBI-SS); the Copenhagen Burnout Inventory-Student Survey (CBI-SS) and the Oldenburg Burnout Inventory-Student Survey (OLBI-SS). Standardized regression weights from Burnout to Exhaustion and Cynicism from the MBI-SS scale, Personal Burnout and Studies Related Burnout from the CBI, and Exhaustion and Disengagement from OLBI, show that these factors are strong manifestations of students' burnout. For college students, the burnout construct is best defined by two dimensions described as "physical and psychological exhaustion" and "cynicism and disengagement."
Resumo:
We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies are found as expected. © 1989 The American Physical Society.
Resumo:
Recently a class of quantum-mechanical potentials was presented that is characterized by the fact that they are exactly solvable only when some of their parameters are fixed to a convenient value, so they were christened as conditionally exactly solvable potentials. Here we intend to expand this class by introducing examples in two dimensions. As a byproduct of our search, we found also another exactly solvable potential. © 1994 The American Physical Society.
Resumo:
The BCS superconductivity to Bose condensation crossover problem is studied in two dimensions in S, P, and D waves, for a simple anisotropic pairing, with a finite-range separable potential at zero temperature. The gap parameter and the chemical potential as a function of Cooper-pair binding B c exhibit universal scaling. In the BCS limit the results for coherence length ξ and the critical temperature T c are appropriate for highT c cuprate superconductors and also exhibit universal scaling as a function of B c.
Resumo:
The momentum distribution is a powerful probe of strongly interacting systems that are expected to display universal behavior. This is contained in the contact parameters which relate few- and many-body properties. Here we consider a Bose gas in two dimensions and explicitly show that the two-body contact parameter is universal and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for measuring the effective dimensionality of a quantum many-body system by exploiting the functional form of the momentum distribution. © 2013 American Physical Society.
Resumo:
Includes bibliography