937 resultados para Treatment target
Resumo:
NF-kappaB activation is associatied with the inflammation of bone destruction and certain cancers. The NEMO (NF-kB essential modulator)-binding domain (NBD) protein inhibits the activation of NF-kappaB. Cellular studies have shown that the NBD protein inhibits osteoclastogenesis. Mimicking infection with a lipopolysaccharide injection in mice resulted in activated osteoclasts and reduced bone mineral density. These responses are inhibited with the NBD peptide. In a mouse model of rheumatoid arthritis, collagen-induced arthritis, treatment with the NBD protein delayed the onset, lowered the incidence and decreased the severity of the arthritis. NF-kappaB is a target in the inflammation associated with bone destruction. A key issue is whether or not this important transcription factor can be inhibited without causing excessive adverse effects and/or toxicity.
Resumo:
Networked information and communication technologies are rapidly advancing the capacities of governments to target and separately manage specific sub-populations, groups and individuals. Targeting uses data profiling to calculate the differential probabilities of outcomes associated with various personal characteristics. This knowledge is used to classify and sort people for differentiated levels of treatment. Targeting is often used to efficiently and effectively target government resources to the most disadvantaged. Although having many benefits, targeting raises several policy and ethical issues. This paper discusses these issues and the policy responses governments may take to maximise the benefits of targeting while ameliorating the negative aspects.
Resumo:
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Resumo:
Background It has been recognized that a clinically significant portion of patients with coronary artery disease (CAD) continue to experience anginal and other related symptoms that are refractory to the combination of medical therapy and revascularization. The Euro Heart Survey on Revascularization (EHSCR) provided an opportunity to assess pharmacological treatment and outcome in patients with proven CAD who were ineligible for revascularization. Methods We performed a secondary analysis of EHS-CR data. After excluding patients with ST-elevation myocardial infarction and those in whom revascularization was not indicated, 4409 patients remained in the analyses. We selected two groups: (1) patients in whom revascularization was the preferred treatment option (n = 3777, 86%), and (2) patients who were considered ineligible for revascularization (n = 632, 14%). Results Patient ineligible for revascularization had a worse risk profile, more often had a total occlusion (59% vs. 37%, p < 0.001), were treated more often with ACE-inhibitors (65% vs. 55%, p < 0.001) but less likely with aspirin (83% vs. 88%, p < 0.001). Overall, they had higher case-fatality at 1-year (7.0% vs. 3.7%, p < 0.001). Regarding self-perceived health status, measured via the EuroQol 5D (EQ-5D) questionnaire, these same patients reported more problems on all dimensions of the EQ-5D. Furthermore, in the revascularization group we observed an increase between discharge and 1-year follow up (utility score from 0.85 to 1.00) whereas patients ineligible for revascularization did not improve over time (utility score remained 0.80) Conclusion In this large cohort of European patients with CAD, those considered ineligible for revascularization had more co-morbidities and risk factors, and scored worse on self-perceived health status as compared to revascularized patients in the revascularization group. With the exception of ACE-inhibitors and aspirin, there were no major differences regarding drug treatment between the two groups. Given these clinically significant observations, there appears to be a role for nurse-led, multidisciplinary, rehabilitation teams that target clinically vulnerable patients whose symptoms remain refractory to standard medical care.
Resumo:
In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.
Resumo:
Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.
Resumo:
Background Atrial fibrillation (AF) patients with a high risk of stroke are recommended anticoagulation with warfarin. However, the benefit of warfarin is dependent upon time spent within the target therapeutic range (TTR) of their international normalised ratio (INR) (2.0 to 3.0). AF patients possess limited knowledge of their disease and warfarin treatment and this can impact on INR control. Education can improve patients' understanding of warfarin therapy and factors which affect INR control. Methods/Design Randomised controlled trial of an intensive educational intervention will consist of group sessions (between 2-8 patients) containing standardised information about the risks and benefits associated with OAC therapy, lifestyle interactions and the importance of monitoring and control of their International Normalised Ratio (INR). Information will be presented within an 'expert-patient' focussed DVD, revised educational booklet and patient worksheets. 200 warfarin-naïve patients who are eligible for warfarin will be randomised to either the intervention or usual care groups. All patients must have ECG-documented AF and be eligible for warfarin (according to the NICE AF guidelines). Exclusion criteria include: aged < 18 years old, contraindication(s) to warfarin, history of warfarin USE, valvular heart disease, cognitive impairment, are unable to speak/read English and disease likely to cause death within 12 months. Primary endpoint is time spent in TTR. Secondary endpoints include measures of quality of life (AF-QoL-18), anxiety and depression (HADS), knowledge of AF and anticoagulation, beliefs about medication (BMQ) and illness representations (IPQ-R). Clinical outcomes, including bleeding, stroke and interruption to anticoagulation will be recorded. All outcome measures will be assessed at baseline and 1, 2, 6 and 12 months post-intervention. Discussion More data is needed on the clinical benefit of educational intervention with AF patients receiving warfarin. Trial registration ISRCTN93952605
Resumo:
Background: Coronary heart disease (CHD) is a public health priority in the UK. The National Service Framework (NSF) has set standards for the prevention, diagnosis and treatment of CHD, which include the use of cholesterol-lowering agents aimed at achieving targets of blood total cholesterol (TC) < 5.0 mmol/L and low density lipoprotein-cholesterol (LDL-C) < 3.0 mmol/L. In order to achieve these targets cost effectively, prescribers need to make an informed choice from the range of statins available. Aim: To estimate the average and relative cost effectiveness of atorvastatin, fluvastatin, pravastatin and simvastatin in achieving the NSF LDL-C and TC targets. Design: Model-based economic evaluation. Methods: An economic model was constructed to estimate the number of patients achieving the NSF targets for LDL-C and TC at each dose of statin, and to calculate the average drug cost and incremental drug cost per patient achieving the target levels. The population baseline LDL-C and TC, and drug efficacy and drug costs were taken from previously published data. Estimates of the distribution of patients receiving each dose of statin were derived from the UK national DIN-LINK database. Results: The estimated annual drug cost per 1000 patients treated with atorvastatin was £289 000, with simvastatin £315 000, with pravastatin £333 000 and with fluvastatin £167 000. The percentages of patients achieving target are 74.4%, 46.4%, 28.4% and 13.2% for atorvastatin, simvastatin, pravastatin and fluvastatin, respectively. Incremental drug cost per extra patient treated to LDL-C and TC targets compared with fluvastafin were £198 and £226 for atorvastatin, £443 and £567 for simvastatin and £1089 and £2298 for pravastatin, using 2002 drug costs. Conclusions: As a result of its superior efficacy, atorvastatin generates a favourable cost-effectiveness profile as measured by drug cost per patient treated to LDL-C and TC targets. For a given drug budget, more patients would achieve NSF LDL-C and TC targets with atorvastatin than with any of the other statins examined.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Resumo:
This dissertation examined the long-term efficacy (8-to-13 years, M = 9.54, SD = 1.689) of exposure-based cognitive-behavioral therapy (CBT) for phobic and anxiety disorders in youths. Long-term efficacy was examined in terms of diagnostic recovery, symptom reductions, and clinically significant change. This dissertation also examined predictors of long-term efficacy (e.g., age, gender, and other clinical characteristics) as well as the relative long-term efficacy of CBT for Hispanic/Latino and European American youth. ^ Participants consisted of 67 youth (age range 15–26 years; M = 19.43, SD = 3.02 years at time of follow-up assessment), (47.8% females, 37.3% Hispanic/Latino) who had participated in one of two clinical trials (Silverman et al., 1999a, b). After providing informed consent to participate in the long term follow-up, youths completed a diagnostic interview and a battery of questionnaires. Results indicated that treatment gains were maintained about 9.5 years after treatment was completed. Maintenance of treatment gains was evident in terms of diagnostic recovery, symptom reductions, and clinically significant change. Long-term treatment gains extended to both ethnic groups and the two ethnic groups were functionally equivalent along most indices examined. Analyses of predictors of long-term outcome showed that parent self-reported pre-treatment depression, youth-reported pre-treatment depression, and youths retrospective reports of negative life events were significantly associated with less favorable long-term gains in terms of total symptoms of anxiety at long-term follow-up. In terms of long-term sequelae, youths with less successful post-treatment outcomes reported seeking-out additional treatment as well as using/abused substances and substance dependence significantly more than youths with successful post-treatment outcomes. Results are discussed in terms of the contribution of the present study to knowledge base about the long-term efficacy of exposure-based CBT procedures for phobic and anxiety disorders in youth. Findings also are discussed in terms of the need to modify CBT procedures to target youths with less successful post-treatment outcomes. Limitations and future directions are presented. ^
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
The purpose of this study was to conduct a larger scale replication and extension study on the use of a Session Impact Measure the Session Evaluation Form. Ninety-one public high school students in Miami Florida were obtained through self or counselor referrals and placed in one or two of five counseling groups for one or two school semesters. To investigate differences in therapy processes across counseling groups, participants were administered a Session Evaluation Form at the end of each therapy session. This assessed group members' perception of four therapy process domains, Group, Facilitator, Skills and Exploration Impacts. The pattern significant results for the MANOVAs provided strong evidence for the greater impact of the group on therapy process relative to the impact of facilitator. Further research is needed to identify more specifically, ways, group process differences interact with other treatment variables.
Resumo:
Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.
Resumo:
Abstract
The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.
This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.
I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.
Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.
II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.
The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.
In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.