923 resultados para Transfer function
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.
Resumo:
This paper presents the new active absorption wave basin, named Hydrodynamic Calibrator (HC), constructed at the University of São Paulo (USP), in the Laboratory facilities of the Numerical Offshore Tank (TPN). The square (14 m 14 m) tank is able to generate and absorb waves from 0.5 Hz to 2.0 Hz, by means of 148 active hinged flap wave makers. An independent mechanical system drives each flap by means of a 1HP servo-motor and a ball-screw based transmission system. A customized ultrasonic wave probe is installed in each flap, and is responsible for measuring wave elevation in the flap. A complex automation architecture was implemented, with three Programmable Logic Computers (PLCs), and a low-level software is responsible for all the interlocks and maintenance functions of the tank. Furthermore, all the control algorithms for the generation and absorption are implemented using higher level software (MATLAB /Simulink block diagrams). These algorithms calculate the motions of the wave makers both to generate and absorb the required wave field by taking into account the layout of the flaps and the limits of wave generation. The experimental transfer function that relates the flap amplitude to the wave elevation amplitude is used for the calculation of the motion of each flap. This paper describes the main features of the tank, followed by a detailed presentation of the whole automation system. It includes the measuring devices, signal conditioning, PLC and network architecture, real-time and synchronizing software and motor control loop. Finally, a validation of the whole automation system is presented, by means of the experimental analysis of the transfer function of the waves generated and the calculation of all the delays introduced by the automation system.
Resumo:
Zusammenfassung:Die Quartärstruktur des respiratorischen Proteins Hämocyanin (Isoform HtH1) aus der marinen Schnecke Haliotis tuberculata wurde vermittels Kryoelektronen-mikroskopie und 3D-Rekonstruktion untersucht. Das Molekül ist zylinderförmig, hat einen Durchmesser von ca. 35 nm und besteht aus einer Zylinderwand und einem internen Kragenkomplex. Dieser wiederum besteht aus einem Collar und einem Arc.Die kryoelektronenmikroskopischen Aufnahmen von in glasartigem Eis fixierten HtH1-Molekülen brachte eine enorme Verbesserung der Anzahl der zur Verfügung stehenden Ansichtswinkel gegenüber den negativkontrastierten Molekülen, die auf Karbonfilm präpariert waren.Die 3D-Rekonstruktion des HtH1 mittels Aufnahmen bei drei verschiedenen Defo-kuswerten verbesserte die Auflösung noch einmal deutlich gegenüber den Rekon-struktionen, die aus Aufnahmen bei einem festen Defokuswert gemacht wurden, und zwar auf 12 Å. Das Molekül besitzt eine D5-Symmetrie.Aus dieser bisher genausten Rekonstruktion eines Molluskenhämocyanins aus EM-Bildern ließen sich folgende neue Strukturdetails ableiten:· Ein Untereinheitendimer konnte als Repeating Unit im Dekamer des HtH1 beschrieben werden.· Das Untereinheitendimer konnte aus der 3D-Dichtekarte isoliert werden. Es be-steht eindeutig aus 16 Massen, die funktionellen Domänen entsprechen. Zwei dieser Massen bilden den Collar, zwei den Arc und 12 das Wandsegment.· Die gegenläufige Anordnung der beiden Untereinheiten innerhalb dieses Unte-reinheitendimers konnten bestätigt und auf zwei Möglichkeiten eingeschränkt werden.· Die Zahl der alternativen Anordnungen der 16 funktionellen Domänen (HtH1-a bis HtH1-h) im Untereinheitendimer konnten von 80 auf 2 eingeengt werden.· Es konnte über molekulares Modellieren mithilfe einer publizierten Kristallstruk-tur eine 3D-Struktur fastatomarer Auflösung der funktionellen Domäne HtH1-g berechnet werden.· Die funktionelle Domäne HtH1-g konnte als Domänenpaar plausibel in die 3D?Dichtekarte des Untereinheitendimers eingepasst werden, und zwar in die beiden Massen des Arc.Aus der elektronenmikroskopisch gewonnenen Dichtekarte wurde mit Hilfe des
Resumo:
Ziel dieser Dissertation ist die experimentelle Charakterisierung und quantitative Beschreibung der Hybridisierung von komplementären Nukleinsäuresträngen mit oberflächengebundenen Fängermolekülen für die Entwicklung von integrierten Biosensoren. Im Gegensatz zu lösungsbasierten Verfahren ist mit Microarray Substraten die Untersuchung vieler Nukleinsäurekombinationen parallel möglich. Als biologisch relevantes Evaluierungssystem wurde das in Eukaryoten universell exprimierte Actin Gen aus unterschiedlichen Pflanzenspezies verwendet. Dieses Testsystem ermöglicht es, nahe verwandte Pflanzenarten auf Grund von geringen Unterschieden in der Gen-Sequenz (SNPs) zu charakterisieren. Aufbauend auf dieses gut studierte Modell eines House-Keeping Genes wurde ein umfassendes Microarray System, bestehend aus kurzen und langen Oligonukleotiden (mit eingebauten LNA-Molekülen), cDNAs sowie DNA und RNA Targets realisiert. Damit konnte ein für online Messung optimiertes Testsystem mit hohen Signalstärken entwickelt werden. Basierend auf den Ergebnissen wurde der gesamte Signalpfad von Nukleinsärekonzentration bis zum digitalen Wert modelliert. Die aus der Entwicklung und den Experimenten gewonnen Erkenntnisse über die Kinetik und Thermodynamik von Hybridisierung sind in drei Publikationen zusammengefasst die das Rückgrat dieser Dissertation bilden. Die erste Publikation beschreibt die Verbesserung der Reproduzierbarkeit und Spezifizität von Microarray Ergebnissen durch online Messung von Kinetik und Thermodynamik gegenüber endpunktbasierten Messungen mit Standard Microarrays. Für die Auswertung der riesigen Datenmengen wurden zwei Algorithmen entwickelt, eine reaktionskinetische Modellierung der Isothermen und ein auf der Fermi-Dirac Statistik beruhende Beschreibung des Schmelzüberganges. Diese Algorithmen werden in der zweiten Publikation beschrieben. Durch die Realisierung von gleichen Sequenzen in den chemisch unterschiedlichen Nukleinsäuren (DNA, RNA und LNA) ist es möglich, definierte Unterschiede in der Konformation des Riboserings und der C5-Methylgruppe der Pyrimidine zu untersuchen. Die kompetitive Wechselwirkung dieser unterschiedlichen Nukleinsäuren gleicher Sequenz und die Auswirkungen auf Kinetik und Thermodynamik ist das Thema der dritten Publikation. Neben der molekularbiologischen und technologischen Entwicklung im Bereich der Sensorik von Hybridisierungsreaktionen oberflächengebundener Nukleinsäuremolekülen, der automatisierten Auswertung und Modellierung der anfallenden Datenmengen und der damit verbundenen besseren quantitativen Beschreibung von Kinetik und Thermodynamik dieser Reaktionen tragen die Ergebnisse zum besseren Verständnis der physikalisch-chemischen Struktur des elementarsten biologischen Moleküls und seiner nach wie vor nicht vollständig verstandenen Spezifizität bei.
Resumo:
Il presente lavoro di tesi è stato svolto presso il servizio di Fisica Sanitaria del Policlinico Sant'Orsola-Malpighi di Bologna. Lo studio si è concentrato sul confronto tra le tecniche di ricostruzione standard (Filtered Back Projection, FBP) e quelle iterative in Tomografia Computerizzata. Il lavoro è stato diviso in due parti: nella prima è stata analizzata la qualità delle immagini acquisite con una CT multislice (iCT 128, sistema Philips) utilizzando sia l'algoritmo FBP sia quello iterativo (nel nostro caso iDose4). Per valutare la qualità delle immagini sono stati analizzati i seguenti parametri: il Noise Power Spectrum (NPS), la Modulation Transfer Function (MTF) e il rapporto contrasto-rumore (CNR). Le prime due grandezze sono state studiate effettuando misure su un fantoccio fornito dalla ditta costruttrice, che simulava la parte body e la parte head, con due cilindri di 32 e 20 cm rispettivamente. Le misure confermano la riduzione del rumore ma in maniera differente per i diversi filtri di convoluzione utilizzati. Lo studio dell'MTF invece ha rivelato che l'utilizzo delle tecniche standard e iterative non cambia la risoluzione spaziale; infatti gli andamenti ottenuti sono perfettamente identici (a parte le differenze intrinseche nei filtri di convoluzione), a differenza di quanto dichiarato dalla ditta. Per l'analisi del CNR sono stati utilizzati due fantocci; il primo, chiamato Catphan 600 è il fantoccio utilizzato per caratterizzare i sistemi CT. Il secondo, chiamato Cirs 061 ha al suo interno degli inserti che simulano la presenza di lesioni con densità tipiche del distretto addominale. Lo studio effettuato ha evidenziato che, per entrambi i fantocci, il rapporto contrasto-rumore aumenta se si utilizza la tecnica di ricostruzione iterativa. La seconda parte del lavoro di tesi è stata quella di effettuare una valutazione della riduzione della dose prendendo in considerazione diversi protocolli utilizzati nella pratica clinica, si sono analizzati un alto numero di esami e si sono calcolati i valori medi di CTDI e DLP su un campione di esame con FBP e con iDose4. I risultati mostrano che i valori ricavati con l'utilizzo dell'algoritmo iterativo sono al di sotto dei valori DLR nazionali di riferimento e di quelli che non usano i sistemi iterativi.
Resumo:
Lo scopo di questo lavoro è la caratterizzazione fisica del flat panel PaxScan4030CB Varian, rivelatore di raggi X impiegato in un ampio spettro di applicazioni cliniche, dalla radiografia generale alla radiologia interventistica. Nell’ambito clinico, al fine di una diagnosi accurata, è necessario avere una buona qualità dell’immagine radiologica mantenendo il più basso livello di dose rilasciata al paziente. Elemento fondamentale per ottenere questo risultato è la scelta del rivelatore di radiazione X, che deve garantire prestazioni fisiche (contrasto, risoluzione spaziale e rumore) adeguati alla specifica procedura. Le metriche oggettive che misurano queste caratteristiche sono SNR (Signal-to-Noise Ratio), MTF (Modulation Transfer Function) ed NPS (Noise Power Spectrum), che insieme contribuiscono alla misura della DQE (Detective Quantum Efficiency), il parametro più completo e adatto a stabilire le performance di un sistema di imaging. L’oggettività di queste misure consente anche di mettere a confronto tra loro diversi sistemi di rivelazione. La misura di questi parametri deve essere effettuata seguendo precisi protocolli di fisica medica, che sono stati applicati al rivelatore PaxScan4030CB presente nel laboratorio del Centro di Coordinamento di Fisica Medica, Policlinico S.Orsola. I risultati ottenuti, conformi a quelli dichiarati dal costruttore, sono stati confrontati con successo con alcuni lavori presenti in letteratura e costituiscono la base necessaria per la verifica di procedure di ottimizzazione dell’immagine radiologica attraverso interventi sul processo di emissione dei raggi X e sul trattamento informatico dell’immagine (Digital Subtraction Angiography).
Resumo:
A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.
Resumo:
Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.
Resumo:
The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.
Resumo:
For enhanced immersion into a virtual scene more than just the visual sense should be addressed by a Virtual Reality system. Additional auditory stimulation appears to have much potential, as it realizes a multisensory system. This is especially useful when the user does not have to wear any additional hardware, e.g., headphones. Creating a virtual sound scene with spatially distributed sources requires a technique for adding spatial cues to audio signals and an appropriate reproduction. In this paper we present a real-time audio rendering system that combines dynamic crosstalk cancellation and multi-track binaural synthesis for virtual acoustical imaging. This provides the possibility of simulating spatially distributed sources and, in addition to that, near-to-head sources for a freely moving listener in room-mounted virtual environments without using any headphones. A special focus will be put on near-to-head acoustics, and requirements in respect of the head-related transfer function databases are discussed.
Resumo:
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.
Resumo:
PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Resumo:
We compare six high-resolution Holocene, sediment cores along a S-N transect on the Norwegian-Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10-102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than +- 1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas-Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S-N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60-69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72-77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S-N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000-8000, 5500-3000 and 1000 and ~400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.