909 resultados para Tourism, recreation and climate change
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
Climate change may pose challenges and opportunities to viticulture, and much research has focused in studying the likely impacts on grapes and wine production in different regions worldwide. This study assesses the vulnerability and adaptive capacity of the viticulture sector under changing climate conditions, based on a case study in El Penedès region, Catalonia. Farm assets, livelihood strategies, farmer-market interactions and climate changes perceptions are analysed through semi-structured interviews with different types of wineries and growers. Both types of actors are equally exposed to biophysical stressors but unevenly affected by socioeconomic changes. While wineries are vulnerable because of the current economic crisis and the lack of diversification of their work, which may affect their income or production, growers are mainly affected by the low prices of their products and the lack of fix contracts. These socioeconomic stressors strongly condition their capacity to adapt to climate change, meaning that growers prioritize their immediate income problems, rather than future socioeconomic or climate threats. Therefore, growers undertake reactive adaptation to climate changing conditions, mainly based on ancient knowledge, whilst wineries combine both reactive and anticipatory adaptation practices. These circumstances should be addressed in order to allow better anticipatory adaptation to be implemented, thus avoiding future climate threats.
Resumo:
Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolution and geographic extent. Here, we assess whether climate-change induced habitat losses predicted at the European scale (10x10' grid cells) are also predicted from local scale data and modeling (25x25m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10x10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species' evolutionary potential1. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation2, 3, 4, 5. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21 kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21 kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.
Resumo:
The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low). Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality) and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (<10% to >60%). Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production.
Resumo:
This paper aims at evaluating the compatibility of coercive climate policies with liberal neutrality. More precisely, it focuses on the doctrine of state neutrality as associated with the "harm principle". It argues that given the difficulty of attributing causal responsibilities for climate harms to individuals, the harm principle doesn't work in this case, at least if one endorses a liberal atomistic ontology. Furthermore, the definition of what constitutes climate harms implies making moral assumptions, which makes it impossible to justify climate policies in a neutral way. Finally, the paper shows another consequence of applying neutrality to the case of climate change, that is the risk of a shift from political forms of decision-making to technocracy. Focusing too much on liberty of choice may (paradoxically) be to the detriment of political freedom. The paper concludes that climate change is an intrinsically moral issue and that it should be the occasion of a political debate about our current values and lifestyles. It should not be reduced to a mere question of carbon metric.
Resumo:
Työn päätavoite on tutkia vihreän sähkön ja sertifikaattien kaupan ja EY:n uusien ilmastonmuutosta koskevien direktiivien ja direktiiviehdotusten välisiä yhteyksiä. Tutkimuksessa käsitellään direktiiviä sähköntuotannosta uusiutuvilla energialähteillä ja direktiiviehdotuksia Euroopan Unionin alueen päästökaupasta sekä yhdistetyn sähkön ja lämmön tuotannon lisäämisestä. Työ keskittyy erään suomalaisen metsäteollisuusyrityksen toimiin ilmastonmuutoksen hidastamiseksi. Tutkimus keskittyy pääosin EU:n suunnitelmaan aloittaa Unionin jäsenvaltioiden välinen päästökauppa, koska tämä järjestelmä tulee toteutuessaan olemaan teollisuuden kannalta merkittävä. Tilannetta on analysoitu neljän sellu- ja paperitehtaan hiilidioksidipäästölaskelmien avulla. Työssä kehitettyjä laskumalleja voidaan käyttää avuksi yhtiön muilla tehtailla. Tämän lisäksi työssä on luotu malli energiainvestointien arvioimiseksi tulevaisuudessa ottamalla päästöoikeuden hinnan vaikutus huomioon. Päästökaupan vaikutukset pohjoismaisilla vapautuneilla sähkömarkkinoilla on analysoity, koska teollinen sähkönhankinta on suuresti riippuvainen tästä markkinasta. Suomen metsäteollisuuden oma yhdistetty sähkön ja lämmön tuotanto erityisesti uusiutuvista energialähteistä tulee olemaan entistäkin tärkeämpää tiukentuvassa toimintaympäristössä. Tällä hetkellä on käynnissä kokeilu lisäarvon saamiseksi omalle sähköntuotannolle. Tällä haetaan kokemuksia ja valmiutta tulevaa päästökauppaa varten.
Resumo:
BACKGROUND: The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS: We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION: Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Resumo:
AimGlobal environmental changes challenge traditional conservation approaches based on the selection of static protected areas due to their limited ability to deal with the dynamic nature of driving forces relevant to biodiversity. The Natura 2000 network (N2000) constitutes a major milestone in biodiversity conservation in Europe, but the degree to which this static network will be able to reach its long-term conservation objectives raises concern. We assessed the changes in the effectiveness of N2000 in a Mediterranean ecosystem between 2000 and 2050 under different combinations of climate and land cover change scenarios. LocationCatalonia, Spain. MethodsPotential distribution changes of several terrestrial bird species of conservation interest included in the European Union's Birds Directive were predicted within an ensemble-forecasting framework that hierarchically integrated climate change and land cover change scenarios. Land cover changes were simulated using a spatially explicit fire-succession model that integrates fire management strategies and vegetation encroachment after the abandonment of cultivated areas as the main drivers of landscape dynamics in Mediterranean ecosystems. ResultsOur results suggest that the amount of suitable habitats for the target species will strongly decrease both inside and outside N2000. However, the effectiveness of N2000 is expected to increase in the next decades because the amount of suitable habitats is predicted to decrease less inside than outside this network. Main conclusionsSuch predictions shed light on the key role that the current N2000may play in the near future and emphasize the need for an integrative conservation perspective wherein agricultural, forest and fire management policies should be considered to effectively preserve key habitats for threatened birds in fire-prone, highly dynamic Mediterranean ecosystems. Results also show the importance of considering landscape dynamics and the synergies between different driving forces when assessing the long-term effectiveness of protected areas for biodiversity conservation.
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
The Kyoto protocol allows Annex I countries to deduct carbon sequestered by land use, land-use change and forestry from their national carbon emissions. Thornley and Cannell (2000) demonstrated that the objectives of maximizing timber and carbon sequestration are not complementary. Based on this finding, this paper determines the optimal selective management regime taking into account the underlying biophysical and economic processes. The results show that the net benefits of carbon storage only compensate the decrease in net benefits of timber production once the carbon price has exceeded a certain threshold value. The sequestration costs are significantly lower than previous estimates
Resumo:
Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes