966 resultados para Tiopurina metil transferase
Resumo:
Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.
Resumo:
The presence of 1-methyl adenine in transfer RNA is a feature that Mycobacterium smegmatis shares with only a few other prokaryotes. The enzyme 1-methyl adenine tRNA methyl transferase from this source has been purified and the preliminary results show the presence of two activity peaks with different substrate specificity.
Resumo:
Rat brain particulate fractions were shown to acylate [32P]1-alkyl-sn-glycero-3-phosphorylethanolamine (GPE). While the main product is 1-alkyl-2-acyl GPE, about 12 per cent of the radioactivity was also found in 1-alkenyl-2-acyl GPE. The acyl transferase activity was completely dependent on added ATP and CoA and it was localized mainly in the microsomal fraction. A comparative study of acyl transferase activities to 1-alkyl-, 1-alkenyl-, and 1-acyl GPE by crude mitochondrial fraction and microsomes of 10, 16 and 22-day-old rat brains showed a progressive increase in activity with development. In the 22-day-old rat brain the order of activity towards the three substrates is as follows: 1-acyl GPE ± 1-alkenyl GPE ± 1-alkyl GPE with a crude mitochondrial fraction and 1-acyl GPE ± 1-alkyl GPE ± 1-alkenyl GPE with microsomes.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Resumo:
For most RNA viruses RNA-dependent RNA polymerases (RdRPs) encoded by the virus are responsible for the entire RNA metabolism. Thus, RdRPs are critical components in the viral life cycle. However, it is not fully understood how these important enzymes function during viral replication. Double-stranded RNA (dsRNA) viruses perform the synthesis of their RNA genome within a proteinacous viral particle containing an RdRP as a minor constituent. The phi6 bacteriophage is the best-studied dsRNA virus, providing an excellent background for studies of its RNA synthesis. The purified recombinant phi6 RdRP is highly active in vitro and it possesses both RNA replication and transcription activities. The crystal structure of the phi6 polymerase, solved in complex with a number of ligands, provides a working model for detailed in vitro studies of RNA-dependent RNA polymerization. In this thesis, the primer-independent initiation of the phi6 RdRP was studied in vitro using biochemical and structural methods. A C-terminal, four-amino-acid-long loop protruding into the central cavity of the phi6 RdRP has been suggested to stabilize the incoming nucleotides of the initiation complex formation through stacking interactions. A similar structural element has been found from several other viral RdRPs. In this thesis, this so-called initiation platform loop was subjected to site-directed mutagenesis to address its role in the initiation. It was found that the initiation mode of the mutants is primer-dependent, requiring either an oligonucleotide primer or a back-priming initiation mechanism for the RNA synthesis. The crystal structure of a mutant RdRP with altered initiation platform revealed a set of contacts important for primer-independent initiation. Since phi6 RdRP is structurally and functionally homologous to several viral RdRPs, among them the hepatitis C virus RdRP, these results provide further general insight to understand primer-independent initiation. In this study it is demonstrated that manganese phasing could be used as a practical tool for solving structures of large proteins with a bound manganese ion. The phi6 RdRP was used as a case study to obtain phases for crystallographic analysis. Manganese ions are naturally bound to the phi6 RdRP at the palm domain of the enzyme. In a crystallographic experiment, X-ray diffraction data from a phi6 RdRP crystal were collected at a wavelength of 1.89 Å, which is the K edge of manganese. With this data an automatically built model of the core region of the protein could be obtained. Finally, in this work terminal nucleotidyl transferase (TNTase) activity of the phi6 RdRP was documented in the isolated polymerase as well as in the viral particle. This is the first time that such an activity has been reported in a polymerase of a dsRNA virus. The phi6 RdRP used uridine triphosphates as the sole substrate in a TNTase reaction but could accept several heterologous templates. The RdRP was able to add one or a few non-templated nucleotides to the 3' end of the single- or double-stranded RNA substrate. Based on the results on particle-mediated TNTase activity and previous structural information of the polymerase, a model for termination of the RNA-dependent RNA synthesis is suggested in this thesis.
Resumo:
Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (L-alanine-[2,3-epoxycyclohexano-4]-L-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of L-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize L-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to L-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.
Resumo:
An immunoscreening approach was used to isolate a strongly positive cDNA clone from an Entamoeba histolytica HK-9 cDNA expression library in the phage vector lambda ZAP-II. The 1.85-kb cDNA insert was found to be truncated and encoded the cysteine-rich, immunodominant domain of the antigenic 170-kDa subunit of the amebal galactose N-acetylgalactosamine binding lectin. This domain was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Inclusion bodies of the recombinant protein were solubilized with Sarkosyl, and the protein was enriched from the crude bacterial extract by thiol-affinity chromatography. The recombinant protein was used to develop a rapid, sensitive, and specific avidin-biotin microtiter enzyme-linked immunosorbent assay (ELISA) for invasive amebiasis. Sera from 38 individuals suffering from invasive amebiasis, 12 individuals with noninvasive amebiasis, 44 individuals with other infections, and 27 healthy subjects were screened by the recombinant antigen-based ELISA. The sensitivity and specificity of the assay were 90.4 and 94.3%, respectively, which correlated well with those of an ELISA developed with crude amebal antigen (r = 0.94; P < 0.0001), as well as with those of a commercially available serodiagnostic ELISA (r = 0.92; P < 0.0001). Thus, the bacterially expressed recombinant lectin can replace the crude amebal extract as an antigen in the serodiagnosis of invasive amebiasis by using avidin-biotin microtiter ELISA.
Resumo:
Malaria causes a worldwide annual mortality of about a million people.Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L-lactate dehydrogenase, and Plasmepsins. In addition,our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy.
Resumo:
Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.
Resumo:
The biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (ODAP) the Lathyrus sativus neurotoxin has been found to follow the scheme depicted below: {A figure is presented}. The first reaction is catalysed by oxalyl-CoA synthetase which has properties similar to that of the enzyme in peas. The second reaction is catalysed by another enzyme which is specific to L. sativus and is designated as oxalyl-CoA-α,β-diaminopropionic acid oxalyl transferase. The enzymes have been purified by about 60-fold and their properties studied. A partial resolution of the two enzyme activities has been achieved using CM-sephadex columns.
Resumo:
Three direct repeats of 320, 340 and 238 nucleotides were detected upstream to the 5′ end of the 18S rRNA gene of an rDNA unit present on a 9.8 kb EcoRT fragment of the rice DNA. The primer extension analysis showed that the site of initiation of transcription is in the 1st repeat at an A, the 623rd nucleotide upstream to the 5′ end of the 18S rRNA gene. Different stretches of the intergenic spacer DNA linked to the Chloramphenicol acetyl transferase gene were transcribed in the intact nuclei of rice embryos. The S1 nuclease protection analysis of the transcripts using [32P]-labelled Chloramphenicol acetyl transferase gene as the probe showed the presence of multiple promoters for rDNA transcription.
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.