900 resultados para Ti-6Al-4V
Resumo:
The performance of the contacts, where Au/Ti layers are used in the metallization scheme, largely depends on the product phases grown by interdiffusion at the interface. It is found that four intermetallic compounds grow with narrow homogeneity range and wavy interfaces in the interdiffusion zone. The presence of wavy interfaces is the indication of high anisotropy in diffusion of the product phases. This also reflects in the deviation of parabolic growth from the average. Further, we have determined the relevant diffusion parameters, such as interdiffusion coefficient in the penetrated region of the end members and integrated diffusion coefficients of the intermetallic compounds.
Effects of Zr and Ti doping on the dielectric response of CeO2: A comparative first-principles study
Resumo:
Zr doping in ceria (CeO2) results in enhanced static dielectric response compared to pure ceria. On the other hand, Ti doping in ceria keeps its dielectric constant unchanged. We use first-principles density functional theory calculations based on pseudopotentials and a plane wave basis to determine electronic properties and dielectric response of Zr/Ti-doped and oxygen-vacancy-introduced ceria. Softening of phonon modes is responsible for the enhancement in dielectric response of Zr-doped ceria compared to that of pure ceria. The ceria-zirconia mixed oxides should have potential use as high-k materials in the semiconductor industry. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of thermal cycling on the load-controlled tension-tension fatigue behavior of a Ni-Ti-Fe shape memory alloy (SMA) at room temperature was studied. Considerable strain accumulation was observed to occur in this alloy under both quasi-static and cyclic loading conditions. Though, in all cases, steady-state is reached within the first 50-100 cycles, the accumulated steady-state strain, epsilon(p.ss), is much smaller in thermally cycled alloy. As a result, the fatigue performance of them was found to be significantly enhanced vis-a-vis the as-solutionized alloy. Furthermore, under load-controlled conditions, the fatigue life of Ni-Ti-Fe alloys was found to be exclusively dependent on epsilon(p.ss). Observations made by profilometry and differential scanning calorimetry (DSC) indicate that the 200-500% enhancement in fatigue life of thermally cycled alloy is due to the homogeneous distribution of the accumulated fatigue strain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The effect of substrate and annealing temperatures on mechanical properties of Ti-rich NiTi films deposited on Si (100) substrates by DC magnetron sputtering was studied by nanoindentation. NiTi films were deposited at two substrate temperatures viz. 300 and 400 degrees C. NiTi films deposited at 300 degrees C were annealed for 4 h at four different temperatures, i.e. 300, 400, 500 and 600 degrees C whereas films deposited at 400 degrees C were annealed for 4 h at three different temperatures, i.e. 400, 500 and 600 degrees C. The elastic modulus and hardness of the films were found to be the same in the as-deposited as well as annealed conditions for both substrate temperatures. For a given substrate temperature, the hardness and elastic modulus were found to remain unchanged as long as the films were amorphous. However, both elastic modulus and hardness showed an increase with increasing annealing temperature as the films become crystalline. The results were explained on the basis of the change in microstructure of the film with change in annealing temperature.
Resumo:
Theoretical analysis of internal frequency doubling in actively mode locked broadband solid state lasers is presented. The analysis is used to study the dependence of mode locked pulsewidth on the second harmonic conversion efficiency, the modulation depth, and the tuning element bandwidth in an AM mode locked Ti: sapphire laser. The results are presented in the form of graphs.
Resumo:
We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Electron diffraction studies were carried out to establish the icosahedral phase formation in rapidly quenched Ti-37 at% Mn and Ti-24 at% Mn-13 at% Fe alloys. Distortions in the diffraction spots and diffuse intensities in the diffraction patterns were investigated. The existence of a rational approximant structure and a decagonal like phase are also reported.
Resumo:
A structural investigation of cubic oxides (space group I23) of the formula Bi(26-x)M(x)O(40-delta) (M = Ti, Mn, Fe, Co, Ni and Pb) related to the Y-Bi2O3 phase has been carried out by the Rietveld profile analysis of high-resolution X-ray powder diffraction data in order to establish the cation distributions. Compositional dependence of the cation distribution has been examined in the case of Bi26-xCoxO40-delta (1 < x < 16). The study reveals that in Bi(26-X)M(X)O(40-delta) with M = Ti, Mn, Fe, Co or Pb, the M cations tend to occupy tetrahedral (2a) sites when x < 2 while the octahedral (24f) sites are shared by the excess Co or Ni cations with Bi atoms when x > 2. Also experimental magnetic moments of Mn, Co and Ni derivatives have been used to establish the valence state and distribution of these cations.
Resumo:
Compressive stress-strain curves have been generated over a range of temperatures (900-1100-degrees-C and strain rates (0.001-100 s-1) for two starting structures consisting of lath alpha2 and equiaxed alpha2 in a Ti-24Al-11Nb alloy. The data from these tests have been analysed in terms of a dynamic model for processing. The results define domains of strain rate and temperature in which dynamic recrystallization of alpha2 occurs for both starting structures. The rate controlling process for dynamic recrystallization is suggested to be cross-slip in the alpha2 phase. A region of processing instability has also been defined within which shear bands form in the lath structure. Recrystallization of the beta phase is shown to occur for different combinations of strain rate and temperature from those in which the alpha2 phase recrystallizes dynamically
Resumo:
In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.
Resumo:
We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at similar to 5.3 THz (5.0 THz) and similar to 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at similar to 5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of pi between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.
Resumo:
Melt spinning of Ti50Ni50 ? xCux (x = 10, 25, 40) alloys showed that the glass-forming ability is good for Cu-rich compositions and poor for Ni-rich compositions. The results of mechanical alloying experiments in the same system showed a reverse trend as far as the glass-forming ability is concerned. These contradictory results are explained in the light of thermodynamic and kinetic considerations. Crystallization results of the melt spun alloys are also presented.