823 resultados para THERMOLUMINESCENCE DOSIMETRY PHOSPHOR
Resumo:
The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^
Resumo:
This work aimed to create a mailable and OSLD-based phantom with accuracy suitable for RPC audits of HDR brachytherapy sources at institutions participating in NCI-funded cooperative clinical trials. An 8 × 8 × 10 cm3 prototype with two slots capable of holding nanoDot Al2O3:C OSL dosimeters (Landauer, Glenwood, IL) was designed and built. The phantom has a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. Irradiations were performed with an 192Ir HDR source to determine correction factors for linearity with dose, dose rate, and the combined effect of irradiation energy and phantom construction. The uncertainties introduced by source positioning in the phantom and timer resolution limitations were also investigated. It was found that the linearity correction factor was where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters under 60Co irradiation. There was no significant dose rate effect. Separate energy+block correction factors were determined for both models of 192Ir sources currently in clinical use and these vendor-specific correction factors differed by almost 2.6%. For Nucletron sources, this correction factor was 1.026±0.004 (99% Confidence Interval) and for Varian sources it was 1.000±0.007 (99% CI). Reasonable deviations in source positioning within the phantom and the limited resolution of the source timer had insignificant effects on the ability to measure dose. Overall measurement uncertainty of the system was estimated to be ±2.5% for both Nucletron and Varian source audits (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of eight participating institutions resulted in an average RPC-to-institution dose ratio of 1.000 with a standard deviation of 0.011.
Resumo:
Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.
Resumo:
With continuous new improvements in brachytherapy source designs and techniques, method of 3D dosimetry for treatment dose verifications would better ensure accurate patient radiotherapy treatment. This study was aimed to first evaluate the 3D dose distributions of the low-dose rate (LDR) Amersham 6711 OncoseedTM using PRESAGE® dosimeters to establish PRESAGE® as a suitable brachytherapy dosimeter. The new AgX100 125I seed model (Theragenics Corporation) was then characterized using PRESAGE® following the TG-43 protocol. PRESAGE® dosimeters are solid, polyurethane-based, 3D dosimeters doped with radiochromic leuco dyes that produce a linear optical density response to radiation dose. For this project, the radiochromic response in PRESAGE® was captured using optical-CT scanning (632 nm) and the final 3D dose matrix was reconstructed using the MATLAB software. An Amersham 6711 seed with an air-kerma strength of approximately 9 U was used to irradiate two dosimeters to 2 Gy and 11 Gy at 1 cm to evaluate dose rates in the r=1 cm to r=5 cm region. The dosimetry parameters were compared to the values published in the updated AAPM Report No. 51 (TG-43U1). An AgX100 seed with an air-kerma strength of about 6 U was used to irradiate two dosimeters to 3.6 Gy and 12.5 Gy at 1 cm. The dosimetry parameters for the AgX100 were compared to the values measured from previous Monte-Carlo and experimental studies. In general, the measured dose rate constant, anisotropy function, and radial dose function for the Amersham 6711 showed agreements better than 5% compared to consensus values in the r=1 to r=3 cm region. The dose rates and radial dose functions measured for the AgX100 agreed with the MCNPX and TLD-measured values within 3% in the r=1 to r=3 cm region. The measured anisotropy function in PRESAGE® showed relative differences of up to 9% with the MCNPX calculated values. It was determined that post-irradiation optical density change over several days was non-linear in different dose regions, and therefore the dose values in the r=4 to r=5 cm regions had higher uncertainty due to this effect. This study demonstrated that within the radial distance of 3 cm, brachytherapy dosimetry in PRESAGE® can be accurate within 5% as long as irradiation times are within 48 hours.
Resumo:
First thermoluminescence (TL) datings of glacial deposits from several well-known sites in northwest Germany (Schleswig-Holstein) indicate a possible Middle Weichselian Glaciation in this region. The TL dates obtained imply an ice sheet at about 70-40 ka B.P. here, whose presence in this part of Europe has not been previously considered. The reliability of the TL dates was cross-checked on different lithologies; the dating was performed in two independent laboratories. These dates and their interpretations, however, must still be confirmed both geologically and paleontologically on suitable sites where glacial sediments are sandwiched between Eemian deposits and interstadial deposits older than the Late Weichselian.
Resumo:
We fabricate and characterize novel LEDs based on InGaN/GaN nanocolumns grown on patterned substrates, leading to the periodically ordered growth of emitters directly producing white light
Resumo:
The energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available.
Resumo:
The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations