734 resultados para TENSILE DEFORMATION
Resumo:
Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.
Resumo:
High strain shear zones of Brasiliano age, developed in Paleoproterozoic basement gneiss of the Caicó region, Borborema Province, NE Brazil, were associated with medium- to low-grade metamorphism and deformational processes that transformed porphyritic augen gneiss into muscovite quartzite, modifying their original mineralogy and chemical properties. During the last hydrothermal event mobility of major, minor and trace elements was great, whereas the pattern of Rare Earth Elements was not changed. We carried out a Sm-Nd isotopic study in these rocks in order to understand the behavior of Nd isotopes during mylonite generation. TDM model ages at around 2.6 Ga and εNd (t) values for both protolith and transformed rock suggest that the Nd isotopic system remained closed, recording the original source rock signature, despite undergoing two superposed metamorphic events. These new Sm-Nd results provide important information on the geologic evolution of basement rocks in the central Rio Grande do Norte Terrane of the Borborema Province, NE Brazil.
Resumo:
Heating titanium structures is assumed to relieve tensions induced by the casting process as well as possibly optimizing some mechanical properties. The aim of this investigation was to evaluate the effect of thermal treatments on tensile strength of commercially pure titanium (CP Ti) and Ti-6Al-4V alloy. Thirty dumbbell rods, with diameters of 3.0 mm at the central segment and lengths of 42 mm, were cast for each metal using the Rematitan System. CP Ti and Ti-6Al-4V specimens were randomly divided into three groups of ten: a control group that received no thermal treatment and two test groups. One (T1) was heated at 750°C for 2 h and the other (T2) was annealed at 955°C for 1 h and aged at 620°C for 2 h. Tensile strength was measured with a universal testing machine (MTS model 810). Tensile strength means and standard deviations were statistically compared using a Kruskal-Wallis test at a α = 0.05 significance level. No statistically significant differences in tensile strength were observed among CP Ti groups. For the Ti-6Al-4V alloy, the control and T1 groups revealed statistically higher tensile strengths when compared to the T2 group, with no significant difference between the control and T1 groups. © 2005 Springer Science + Business Media, Inc.
Resumo:
In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37 masculineC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Students t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukeys test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).
Resumo:
Purpose: This study evaluated the ultimate tensile strength of a tissue conditioner without nystatin incorporation (GI - control group) and the same tissue conditioner modified by the addition of nystatin in two concentrations: GII - 500,000 International Units (U) and GIII - 1,000,000 U, in which each milligram of the medicament corresponded to 6079 U. Materials and Methods: Dumbbell-shaped specimens (N = 7) with a central cross-sectional area of 33 × 6 × 3 mm were produced for the three experimental groups. After polymerization following manufacturer's instructions, specimens were immersed in distilled water at 37°C for either 24 hours or 7 days and then tested in tension in the MTS 810 at 40 mm/minute. Data were analyzed by two-way ANOVA followed by Tukey's test, at 95% level of confidence. Results: The means (force-grams (gf) ± standard deviation) of the ultimate tensile strength were: GI - 634.29 ± 122.80; GII - 561.92 ± 133.56; and GIII - 547.30 ± 73.47 for 24-hour storage, and GI - 536.68 ± 54.71; GII - 467.50 ± 143.51; and GIII - 500.62 ± 159.76 for 7-day storage. There were no statistically significant differences among the three experimental groups (p > 0.05). The ultimate tensile strength means of all experimental groups after 7 days were significantly lower than those observed after 24 hours (p = 0.04). Conclusions: The results of this study suggest that the addition of nystatin into the tissue conditioner investigated in concentrations below 1,000,000 U did not affect its ultimate tensile strength. Copyright © 2006 by The American College of Prosthodontists.
Resumo:
The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430°C (control group), 480°C and 530°C. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430°C, 480 and 530: CP Ti (486.1 - 501.16 - 498.14 -mean 495.30 MPa) and Ti-6Al-4V alloy (961.33 - 958.26 - 1005.80 - mean 975.13 MPa) while for the Vickers hardness the values were (198.06, 197.85, 202.58 - mean 199.50) and (352.95, 339.36, 344.76 - mean 345.69), respectively. The values were submitted to Analysis of Variance (ANOVA) and Tukey' s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy.
Resumo:
The use of acid etchants to produce surface demineralization and collagen network exposure, allowing adhesive monomers interdiffusion and consequently the formation of a hybrid layer, has been considered the most efficient mechanism of dentin bonding. The aim of this study was to compare the tensile bond strength to dentin of three adhesive systems, two self-etching ones (Clearfil SE Bond - CSEB and One Up Bond F - OUBF) and one total-etching one (Single Bond - SB), under three dentinal substrate conditions (wet, dry and re-wet). Ninety human, freshly extracted third molars were sectioned at the occlusal surface to remove enamel and to form a flat dentin wall. The specimens were restored with composite resin (Filtek Z250) and submitted to tensile bond strength testing (TBS) in an MTS 810. The data were submitted to two-way ANOVA and Tukey's test (p = 0.05). Wet dentin presented the highest TBS values for SB and CSEB. Dry dentin and re-wet produced significantly lower TBS values when using SB. OUBF was not affected by the different conditions of the dentin substrate, producing similar TBS values regardless of the surface pretreatments.
Tensile bond strength: Evaluation of four current adhesive systems in abraded enamel and deep dentin
Resumo:
This study aimed to evaluate the tensile bond strength of adhesive systems in abraded enamel and deep dentin of the occlusal surface of forty human molar teeth. Enamel surfaces as well as the rest of the teeth were coated with epoxy resin and regularized and polished with silicon carbide sandpapers. The 40 teeth were randomized into eight groups of five teeth per group. Four groups were assigned to have deep dentin as the dental substrate and the other four had abraded enamel as the substrate for the adhesives to be tested. The adhesives being tested were the total etching Single Bond: SB, the self-etching Clearfil SE bond: CSEB, self-etching One Up Bond F: OUBF and the self-etching Self-Etch Bond: SEB adhesives. The samples (teeth) were restored with composite resin and subjected to a traction assay. The results were statistically analyzed using the ANOVA and TUKEY tests. The total etching SB adhesive system had the greatest bonding strength of all the adhesives tested, on both dental substrates (20.1 MegaPascals (MPa) on abraded enamel and 19.4 MPa on deep dentin). Of the self-etching dental adhesives tested, CSEB had the greatest bonding strength on both substrates (14.6 MPa on abraded enamel and 15.4 MPa on deep dentin). Both OUBF (11.0 MPa for enamel, 13.1 MPa for dentin) and SEB (10.2 MPa for enamel, 12.6 MPa for dentin) showed comparable bonding strengths without any significant differences for either substrate Thus, the total etching SB adhesive system had better bonding strength than the other self-etching adhesives used, regardless of the dental substrate to which the adhesives had been bonded.
Diametral tensile strength of dual-curing resin cements submitted exclusively to autopolymerization.
Resumo:
OBJECTIVES: To evaluate, at different times, the diametral tensile strength (DTS) of dual-curing resin cements that were not photopolymerized. METHOD AND MATERIALS: Equal amounts of base and catalyst pastes of Panavia F (Kuraray), Variolink II (Vivadent), Rely X (3M ESPE), and Enforce (Dentsply) were mixed and inserted into cylindrical molds (4 x 2 mm) (n = 10). Cements were not photopolymerized. DTS test was performed in a testing machine at 30 minutes, 1 hour, 24 hours, and 7 days. The specimens were stored in light-proof containers with distilled water at 37 degrees C until the time of assay. An autopolymerizing resin cement (Cement-It, Jeneric Pentron) and a zinc phosphate cement served as controls. One-way analysis of variance (ANOVA) and Tukey test were performed separately for each cement and for each time (P <.05). RESULTS: All cements showed an increase in DTS when tested at 1 and 24 hours. Tests at 24 hours and 7 days revealed no statistically significant differences. In all groups, the zinc phosphate cement had the lowest DTS mean values (2.1 MPa, 3.6 MPa, 6.5 MPa, and 6.9 MPa), while Cement-It (35.1 MPa, 33.6 MPa, 46.9 MPa, and 46.3 MPa) and Enforce (31.9 MPa, 31.7 MPa, 43.4 MPa, and 47.6 MPa) presented the highest DTS mean values. CONCLUSION: All cements presented maximal strength at 24 hours. The dual-curing resin cements, even when nonphotopolymerized, demonstrated higher DTS than the zinc phosphate cement and similar or lower values than the autopolymerizing resin cement.
Resumo:
The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm2, respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.
Resumo:
The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.
Resumo:
Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).
Resumo:
Tensile strength (TS) of soil aggregates is an important indicator of soil quality. However, TS varies with aggregate shape. Thus, the objective of this study was to quantify the influence of aggregate shape on TS and propose a shape standardization protocol to increase accuracy in the measurement of TS. The latter was determined on 7,560 aggregates divided into three shapes, (i) irregular shape (IS), (ii) spherical shape (SS), and (iii) flat surface (FS), while preserving the inherent structure of the aggregate. The aggregates with IS had a larger range in the TS (306 kPa) because of the shape variability when compared with SS (238 kPa) and FS (129 kPa). The TS determined in aggregates with FS had smaller coefficient of variation (46%) in comparison with those of IS (70%) and SS (66%), indicating that the aggregate uniformity reduced the influence of shape on the TS. A smaller force (42.12 kPa) was needed to rupture aggregates with FS than IS (58.43 kPa) and SS (56.89 kPa) because of better force distribution in causing the tensile stress. The use of aggregates with the FS enables an accurate assessment of TS in relation to a wide range of management treatments. Copyright © 2013 by Lippincott Williams & Wilkins.
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS