881 resultados para Store Attributes


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salaried managers have been increasing in top management of many Taiwanese companies. Why and how have their roles become more important? In order to answer these questions, it is necessary to examine the complicated relationships between salaried managers and the founders' families who appoint them to top-management positions. This paper examines the case of Hsu Chung-Jen, the president of President Chain Store Corporation. PCSC operates Taiwan's 7-ELEVENs, the largest convenience store chain on the island. He may be regarded as the most advanced salaried manager in Taiwan today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporation of fiber in cereals may lead to quality issues, thus decreasing consumer acceptance. This is partially due to deterioration of the microstructure, one of the primary quality attributes of cereals. The objective of this study was to better understand the mechanisms by which dietary fibers affect the quality of cereal products during extrusioncooking. The study quantified the effect of amount and type of fiber and whole grain on (i) texture, (ii) structure, and (iii) rehydration properties of extruded cereals. New innovative methods were applied and combined with traditional techniques to characterize both the structure and the rehydration properties. Extruded cereals were produced using a starch-based recipe (whole and wheat flours) and two sources of fibers (oat bran concentrate and wheat bran). The oat and wheat bran levels used in this study were 0, 10, and 20%. The different mixtures were extruded in a pilot twinscrew extruder BC21 (Clextral) and then sugar coated after drying. Mechanical properties of extruded cereals were investigated by compression test. The cellular structure was observed by X-ray tomography. The quality of coating (thickness, homogeneity) was analyzed by optical coherence tomography. The rehydration properties of such cereals in milk were evaluated by magnetic resonance imaging and optical coherence tomography. This work revealed that structure assessment of extruded cereals may lead to a better understanding of the effect of fiber addition on texture and rehydration properties. The application of innovative methods, such as optical coherence tomography and magnetic resonance imaging, was found to be useful to quantify the structural properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he inclusion of environmental care data in the decision-making process should be based on the results obtained after scienti?cally evaluating different environmental variables. Herein, a European landscape geographic model is presented. This landscape map would allow the environmental care variable ?visual landscape?, along with other information related to vegetation, geology, soils, cultural variables, etc., to be integrated into the planning process. The methodology used is not new since it has already been tested in Spain by the authors. Nevertheless, the model was adapted to cope with the much more extensive territory of the European Union. This meant dealing with computational dif?culties, and a lack of information. The result of this work is a raster map (100 m cell size) that evaluates landscape quality in Europe by dividing the area into seven visual quality classes. This is a practical tool for territorial development that will facilitate the environmental assessment of plans, such as infrastructure plans, within a strategic pan-European framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of cloud computing, many applications have embraced the ensuing paradigm shift towards modern distributed key-value data stores, like HBase, in order to benefit from the elastic scalability on offer. However, many applications still hesitate to make the leap from the traditional relational database model simply because they cannot compromise on the standard transactional guarantees of atomicity, isolation, and durability. To get the best of both worlds, one option is to integrate an independent transaction management component with a distributed key-value store. In this paper, we discuss the implications of this approach for durability. In particular, if the transaction manager provides durability (e.g., through logging), then we can relax durability constraints in the key-value store. However, if a component fails (e.g., a client or a key-value server), then we need a coordinated recovery procedure to ensure that commits are persisted correctly. In our research, we integrate an independent transaction manager with HBase. Our main contribution is a failure recovery middleware for the integrated system, which tracks the progress of each commit as it is flushed down by the client and persisted within HBase, so that we can recover reliably from failures. During recovery, commits that were interrupted by the failure are replayed from the transaction management log. Importantly, the recovery process does not interrupt transaction processing on the available servers. Using a benchmark, we evaluate the impact of component failure, and subsequent recovery, on application performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el marco del proyecto europeo FI-WARE, en el CoNWet Lab (laboratorio de la ETSI Informáticos de la UPM) se ha implementado la plataforma Web Wstore que es una implementación de referencia del Store Generic Enabler perteneciente a dicho proyecto. El objetivo de FI-WARE es crear la plataforma núcleo del Internet del Futuro (IoF) con la intención de incrementar la competitividad global europea en el mundo de las TI. El proyecto introduce una infraestructura innovadora para la creación y distribución de servicios digitales en internet. WStore ofrece a los proveedores de servicios la plataforma donde publicar sus ofertas y desde la cual los clientes podrán acceder ellas. Estos proveedores ofrecen servicios Web, aplicaciones, widgets y data sets del mismo modo que Google ofrece aplicaciones en la tienda online Google Play o Apple en el App Store. WStore está implementada actualmente como una plataforma Web, por lo que una organización que desee ofrecer el servicio de la store necesita instalar el software en un servidor propio y disponer de un dominio para ofrecer sus productos. El objetivo de este trabajo es migrar WStore a un entorno de computación en la nube de manera que con una única instancia se ofrezca el servicio a las organizaciones que deseen disponer de su propia plataforma, de la cual tendrán total control como si se encontrase en su propia infraestructura. Para esto se implementa una versión de WStore que será desplegada en una infraestructura cloud y ofrecida como Software as a Service. La implementación incluye una serie de módulos de código que se podrán añadir opcionalmente en el proceso de instalación si se desea que la instancia instalada sea Multitenant. Además, en este trabajo se estudian y prueban las herramientas que ofrece MongoDB para desplegar la plataforma Wstore Multitenant en una infraestructura cloud. Estas herramientas son replica sets y sharding que permiten desplegar una base de datos escalable y de alta disponibilidad. ---ABSTRACT---In the context of the European project FI-WARE, the CoNWeT Lab (IT Lab from ETSIINF UPM university) has been implemented the web platform WStore. WStore is a reference implementation of the Generic Enabler Store from FI-WARE project. The FI-WARE goal is to create the core platform of the Future Internet (IoF) with the intention of enhancing Europe's global competitiveness in IT technologies. FI-WARE introduces an innovative infrastructure for the creation and distribution of digital services over the Internet. WStore offers to service providers a platform to publicate offerings and where customers can access them. The providers offer web services, applications, widgets and data sets in the same way that Google offers online applications on Google Play or Apple on App Store plataforms. WStore is currently implemented as a web platform, so if an organization wants to offer the store service, it need to install the software on it’s own serves and have a domain to offer their products. The objective of this paper is to migrate WStore to a cloud computing environment where a single instance of the WStore is offered as a web service to organizations who want their own store. Customers (tenants) of the WStore web service will have total control over the software and WStore administration. The implementation includes several code modules that can be optionally added in the installation process to build a Multitenant instance. In addition, this paper review the tools that MongoDB provide for scalability and high availability (replica sets and sharding) with the purpose of deploying multi-tenant WStore on a cloud infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El trabajo realizado se encuentra enmarcado dentro del proyecto de I+D+I del 7o programa marco de la Comisión Europea Fi-WARE: The future Internet core platform que forma parte de la iniciativa Future Internet PPP. En concreto, se ha desarrollado la especificación de un Generic Enabler con funcionalidad de tienda virtual que de soporte a la publicación y adquisición o subscripción de aplicaciones y servicios dentro del denominado Business Framework Ecosystem (BFE), además de una implementación de referencia de este Generic Enabler (GE) que ha sido utilizada para la realización de una prueba de concepto con el objetivo de comprobar la adecuación del comportamiento de la especificación dentro del BFE. La primera tarea realizada ha consistido en un estudio de otras stores (o tiendas digitales) existentes, mirando aspectos tales como la funcionalidad proporcionada, la información mostrada de los distintos productos ofrecidos o la organización de la interfaz de usuario y la metáfora visual. Este estudio ha tenido como objetivo establecer un punto de partida desde el que empezar a analizar las distintas funcionalidades que deberá proveer el sistema.Utilizando como base el estudio anterior y las necesidades concretas de la plataforma Fi-WARE se paso a la educación de los requisitos generales del sistema en los cuales se especifica a grandes rasgos la funcionalidad que debe proveer esta tienda digital así como algunos aspectos concretos de la experiencia de usuario. Una vez definida la funcionalidad de la store se ha abordado el diseño del sistema. Para realizar este diseño se ha trabajado en dos tareas principales: La primera de estas tareas ha consistido en realizar el diseño de la arquitectura del Store GE, en el que se especifican todos los módulos que debe contener el sistema para poder satisfacer los requisitos, así como las distintas conexiones del Store GE con otros componentes del proyecto Fi-Ware y de sus interrelaciones con el resto de componentes de dicho proyecto. Esto ofrece una visión global de la ubicación del Store GE dentro de la arquitectura general del proyecto Fi-Ware. La segunda tarea ha consistido en el desarrollo de la especicación abierta (Open specication) del Store GE. Esta tarea es probablemente la más relevante de cara a cumplir con los objetivos del proyecto Fi-Ware, ya que Fi-Ware se propone como objetivo principal proporcionar las especificaciones de una plataforma tecnológica abierta para la Internet del futuro, formada por un conjunto de componentes (denominados Generic Enablers), entre los que se encuentra el Store GE. En este documento ha quedado descrito con todo detalle en que consiste el Store GE y cuales son sus APIs, sobre las que se construirán las aplicaciones de la futura Internet basadas en Fi-Ware, de manera que sea posible que cualquier empresa pueda realizar una implementación diferente a la que se está desarrollando en este proyecto (si bien ésta será su implementación de referencia). Para esta Open specication se han desarrollado un modelo de gestión de usuarios y roles, un modelo de datos, diagramas de interacción que definen todas las posibles comunicaciones de la store con otros Generic Enablers del proyecto Fi-Ware, la definición del ciclo de vida de una oferta y las APIs REST del Store GE, incluyendo el contenido de las peticiones y los tipos MIME soportados. En este punto se pudo comenzar a trabajar en la implementación de referencia del Store GE. La primera tarea ha consistido en realizar la integración con el Marketplace GE, otro de los Generic Enablers del proyecto Fi-Ware, para ello se definieron unos requisitos específicos y se realizó un diseño de bajo nivel de este móodulo seguido de la propia implementación y un conjunto exhaustivo de pruebas unitarias para comprobar su correcto funcionamiento. A continuación se pasó a realizar la integracióon con el Repository GE siguiendo los mismos pasos que con la integración con el Marketplace GE. La siguiente tarea realizada ha consistido en la realización de los móodulos necesarios para permitir crear nuevas ofertas en la implementación de referencia de Store GE incluyendo nuevamente una fase de educación de requisitos específicos, un diseño de bajo nivel, la propia implementación y una serie de pruebas unitarias. Una vez implementada la creación de nuevas ofertas, se pasó a la realización de la funcionalidad necesaria para la recuperación y visualizacion de estas ofertas así como a la realización del soporte necesario para el registro de recursos y para la vinculación de estos a determinadas ofertas, siguiendo nuevamente la metodología antes mencionada. Finalmente se ha dado el soporte para la publicación y la adquisición de ofertas. En este caso la adquisición de ofertas se ha realizado tan solo en la parte servidora de la aplicación y no se ha llegado a dar soporte a esta funcionalidad en la interfaz Web al no ser necesaria para la realización de la prueba de concepto prevista. No obstante esta funcionalidad será implementada junto con otras funcionalidades como el soporte de características sociales, ya fuera del ámbito de este Trabajo de fin de grado. Como paso previo a la realización de la prueba de concepto se ha trabajado en la plataforma Wirecloud, que es una implementación de referencia del denominado Application Mashup GE, modicando su funcionalidad para integrarla con la API de compras realizada dentro de la implementación de referencia del Store GE. La úultima tarea realizada para este Trabajo de fin de grado ha consistido por fin en la realización de la prueba de concepto del Store GE integrando su implementación de referencia con las del resto de Generic Enablers, lo cual ha permitido comprobar así el fucionamiento de la arquitectura y modelo propuestos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The software engineering community has paid little attention to non-functional requirements, or quality attributes, compared with studies performed on capture, analysis and validation of functional requirements. This circumstance becomes more intense in the case of distributed applications. In these applications we have to take into account, besides the quality attributes such as correctness, robustness, extendibility, reusability, compatibility, efficiency, portability and ease of use, others like reliability, scalability, transparency, security, interoperability, concurrency, etc. In this work we will show how these last attributes are related to different abstractions that coexist in the problem domain. To achieve this goal, we have established a taxonomy of quality attributes of distributed applications and have determined the set of necessary services to support such attributes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In this work, the influence of two regulated deficit irrigation (RDI) treatments and three different rootstocks on the quality of pistachios was evaluated by analyzing different parameters: morphological analysis, physicochemical analysis and sensory analysis. RESULTS: The results obtained in terms of the choice of rootstock revealed that Pistacia atlantica had increased production yields, nut weight, mineral content, higher intensities of characteristic sensory attributes and a higher degree of consumer satisfaction, than the other rootstocks studied. Moreover, the results established that the application of RDI on pistachio cultivation had no significant influence on production yield, weight, size, colour, water activity or mineral composition. Furthermore, T1 treatment (stem water potential?attributes and a greater level of satisfaction among international consumers. CONCLUSION: These results confirm that the application of deficit irrigation (T1) contributes to an increase in overall product quality. Furthermore, Pistacia atlantica rootstock provided better yield and quality than the other rootstocks studied. © 2014 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of cytosolic free Ca2+ concentration ([Ca2+]i) in excitable cells often acts as a negative feedback signal on firing of action potentials and the associated voltage-gated Ca2+ influx. Increased [Ca2+]i stimulates Ca2+-sensitive K+ channels (IK-Ca), and this, in turn, hyperpolarizes the cell and inhibits Ca2+ influx. However, in some cells expressing IK-Ca the elevation in [Ca2+]i by depletion of intracellular stores facilitates voltage-gated Ca2+ influx. This phenomenon was studied in hypothalamic GT1 neuronal cells during store depletion caused by activation of gonadotropin-releasing hormone (GnRH) receptors and inhibition of endoplasmic reticulum (Ca2+)ATPase with thapsigargin. GnRH induced a rapid spike increase in [Ca2+]i accompanied by transient hyperpolarization, followed by a sustained [Ca2+]i plateau during which the depolarized cells fired with higher frequency. The transient hyperpolarization was caused by the initial spike in [Ca2+]i and was mediated by apamin-sensitive IK-Ca channels, which also were operative during the subsequent depolarization phase. Agonist-induced depolarization and increased firing were independent of [Ca2+]i and were not mediated by inhibition of K+ current, but by facilitation of a voltage-insensitive, Ca2+-conducting inward current. Store depletion by thapsigargin also activated this inward depolarizing current and increased the firing frequency. Thus, the pattern of firing in GT1 neurons is regulated coordinately by apamin-sensitive SK current and store depletion-activated Ca2+ current. This dual control of pacemaker activity facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process may also provide a general mechanism for the integration of voltage-gated Ca2+ influx into receptor-controlled Ca2+ mobilization.