923 resultados para Stochastic Programming
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
National inflation rates reflect domestic and international (regional and global) influences. The relative importance of these components remains a controversial empirical issue. We extend the literature on inflation co-movement by utilising a dynamic factor model with stochastic volatility to account for shifts in the variance of inflation and endogenously determined regional groupings. We find that most of inflation variability is explained by the country specific disturbance term. Nevertheless, the contribution of the global component in explaining industrialised countries’ inflation rates has increased over time.
Resumo:
We model a boundedly rational agent who suffers from limited attention. The agent considers each feasible alternative with a given (unobservable) probability, the attention parameter, and then chooses the alternative that maximises a preference relation within the set of considered alternatives. We show that this random choice rule is the only one for which the impact of removing an alternative on the choice probability of any other alternative is asymmetric and menu independent. Both the preference relation and the attention parameters are identi fied uniquely by stochastic choice data.
Resumo:
In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.
Resumo:
Using the integer programming approach introduced by Sethuraman, Teo, and Vohra (2003), we extend the analysis of the preference domains containing an inseparable ordered pair, initiated by Kalai and Ritz (1978). We show that these domains admit not only Arrovian social welfare functions \without ties," but also Arrovian social welfare functions \with ties," since they satisfy the strictly decomposability condition introduced by Busetto, Codognato, and Tonin (2012). Moreover, we go further in the comparison between Kalai and Ritz (1978)'s inseparability and Arrow (1963)'s single-peak restrictions, showing that the former condition is more \respectable," in the sense of Muller and Satterthwaite (1985).
Resumo:
Classical definitions of complementarity are based on cross price elasticities, and so they do not apply, for example, when goods are free. This context includes many relevant cases such as online newspapers and public attractions. We look for a complementarity notion that does not rely on price variation and that is: behavioural (based only on observable choice data); and model-free (valid whether the agent is rational or not). We uncover a conflict between properties that complementarity should intuitively possess. We discuss three ways out of the impossibility.
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
In this paper the scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of stochastic processes are proved. Interpolation method for generously-monotonous rocesses is entered. Conditions and statements of interpolation theorems concern he xed stochastic process, which diers from the classical results.
Resumo:
BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.
Resumo:
The geometry and connectivity of fractures exert a strong influence on the flow and transport properties of fracture networks. We present a novel approach to stochastically generate three-dimensional discrete networks of connected fractures that are conditioned to hydrological and geophysical data. A hierarchical rejection sampling algorithm is used to draw realizations from the posterior probability density function at different conditioning levels. The method is applied to a well-studied granitic formation using data acquired within two boreholes located 6 m apart. The prior models include 27 fractures with their geometry (position and orientation) bounded by information derived from single-hole ground-penetrating radar (GPR) data acquired during saline tracer tests and optical televiewer logs. Eleven cross-hole hydraulic connections between fractures in neighboring boreholes and the order in which the tracer arrives at different fractures are used for conditioning. Furthermore, the networks are conditioned to the observed relative hydraulic importance of the different hydraulic connections by numerically simulating the flow response. Among the conditioning data considered, constraints on the relative flow contributions were the most effective in determining the variability among the network realizations. Nevertheless, we find that the posterior model space is strongly determined by the imposed prior bounds. Strong prior bounds were derived from GPR measurements and helped to make the approach computationally feasible. We analyze a set of 230 posterior realizations that reproduce all data given their uncertainties assuming the same uniform transmissivity in all fractures. The posterior models provide valuable statistics on length scales and density of connected fractures, as well as their connectivity. In an additional analysis, effective transmissivity estimates of the posterior realizations indicate a strong influence of the DFN structure, in that it induces large variations of equivalent transmissivities between realizations. The transmissivity estimates agree well with previous estimates at the site based on pumping, flowmeter and temperature data.
Resumo:
In This work we present a Web-based tool developed with the aim of reinforcing teaching and learning of introductory programming courses. This tool provides support for teaching and learning. From the teacher's perspective the system introduces important gains with respect to the classical teaching methodology. It reinforces lecture and laboratory sessions, makes it possible to give personalized attention to the student, assesses the degree of participation of the students and most importantly, performs a continuous assessment of the student's progress. From the student's perspective it provides a learning framework, consisting in a help environment and a correction environment, which facilitates their personal work. With this tool students are more motivated to do programming