988 resultados para Static volumetric method
Resumo:
This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM) presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named ""power deflation"", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.
Resumo:
The effects of chromium or nickel oxide additions on the composition of Portland clinker were investigated by X-ray powder diffraction associated with pattern analysis by the Rietveld method. The co-processing of industrial waste in Portland cement plants is an alternative solution to the problem of final disposal of hazardous waste. Industrial waste containing chromium or nickel is hazardous and is difficult to dispose of. It was observed that in concentrations up to 1% in mass, the chromium or nickel oxide additions do not cause significant alterations in Portland clinker composition. (C) 2008 International Centre for Diffraction Data.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
Introduction. This protocol aims at detecting and quantifying quiescent infections of Colletotrichum musae on bananas. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. The materials required and details of the three steps of the protocol (fruit sampling, fruit ripening and anthracnose lesion quantification) are described. Possible troubleshooting is discussed. Results. The protocol results in the quantification of anthracnose lesions on the fruits, which makes it possible to predict postharvest losses due to anthracnose (peel rot), and also to propose a better management of postharvest fungicide applications.
Resumo:
A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40 degrees C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100 degrees C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
Objective: The striatum, including the putamen and caudate, plays an important role in executive and emotional processing and may be involved in the pathophysiology of mood disorders. Few studies have examined structural abnormalities of the striatum in pediatric major depressive disorder (MDD) patients. We report striatal volume abnormalities in medication-naive pediatric MDD compared to healthy comparison subjects. Method: Twenty seven medication-naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD and 26 healthy comparison subjects underwent volumetric magnetic resonance imaging (MRI). The putamen and caudate volumes were traced manually by a blinded rater, and the patient and control groups were compared using analysis of covariance adjusting for age, sex, intelligence quotient, and total brain volumes. Results: MDD patients had significantly smaller right striatum (6.0% smaller) and right caudate volumes (7.4% smaller) compared to the healthy subjects. Left caudate volumes were inversely correlated with severity of depression in MDD subjects. Age was inversely correlated with left and right putamen volumes in MDD patients but not in the healthy subjects. Conclusions: These findings provide fresh evidence for abnormalities in the striatum of medication-naive pediatric MDD patients and suggest the possible involvement of the striatum in the pathophysiology of MDD.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Background Minimal residual disease is an important independent prognostic factor in childhood acute lymphoblastic leukemia. The classical detection methods such as multiparameter flow cytometry and real-time quantitative polymerase chain reaction analysis are expensive, time-consuming and complex, and require considerable technical expertise. Design and Methods We analyzed 229 consecutive children with acute lymphoblastic leukemia treated according to the GBTLI-99 protocol at three different Brazilian centers. Minimal residual disease was analyzed in bone marrow samples at diagnosis and on days 14 and 28 by conventional homo/heteroduplex polymerase chain reaction using a simplified approach with consensus primers for IG and TCR gene rearrangements. Results At least one marker was detected by polymerase chain reaction in 96.4%, of the patients. By combining the minimal residual disease results obtained on days 14 and 28, three different prognostic groups were identified: minimal residual disease negative on days 14 and 28, positive on day 14/negative on day 28, and positive on both. Five-year event-free survival rates were 85%, 75.6%,, and 27.8%, respectively (p<0.0001). The same pattern of stratification held true for the group of intensively treated children. When analyzed in other subgroups of patients such as those at standard and high risk at diagnosis, those with positive B-derived CD10, patients positive for the TEL/AML1 transcript, and patients in morphological remission on a day 28 marrow, the event-free survival rate was found to be significantly lower in patients with positive minimal residual disease on day 28. Multivariate analysis demonstrated that the detection of minimal residual disease on day 28 is the most significant prognostic factor. Conclusions This simplified strategy for detection of minimal residual disease was feasible, reproducible, cheaper and simpler when compared with other methods, and allowed powerful discrimination between children with acute lymphoblastic leukemia with a good and poor outcome.
Resumo:
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available.
Resumo:
Background: Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei. Results: The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infraordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae + Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees; supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. Conclusions: Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.
Resumo:
The authors describe a novel approach to the measurement of nanofriction, and demonstrate the application of the method by measurement of the coefficient of friction for diamondlike carbon (DLC) on DLC, Si on DLC, and Si on Si surfaces. The technique employs an atomic force microscope in a mode in which the tip moves only in the z (vertical) direction and the sample surface is sloped. As the tip moves vertically on the sloped surface, lateral tip slipping occurs, allowing the cantilever vertical deflection and the frictional (lateral) force to be monitored as a function of tip vertical deflection. The advantage of the approach is that cantilever calibration to obtain its spring constants is not necessary. Using this method, the authors have measured friction coefficients, for load range 0 < L M 6 mu N, of 0.047 +/- 0.002 for Si on Si, 0.0173 +/- 0.0009 for Si on DLC, and 0.0080 +/- 0.0005 for DLC on DLC. For load range 9 < L < 13 mu N, the DLC on DLC coefficient of friction increased to 0.051 +/- 0.003. (C) 2008 American Vacuum Society.
Resumo:
In the case of quantum wells, the indium segregation leads to complex potential profiles that are hardly considered in the majority of the theoretical models. The authors demonstrated that the split-operator method is useful tool for obtaining the electronic properties in these cases. Particularly, they studied the influence of the indium surface segregation in optical properties of InGaAs/GaAs quantum wells. Photoluminescence measurements were carried out for a set of InGaAs/GaAs quantum wells and compared to the results obtained theoretically via split-operator method, showing a good agreement.
Resumo:
We report cross sections for elastic collisions of low-energy electrons with the CH(2)O-H(2)O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH(2)O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.
Resumo:
We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.