975 resultados para Soil parameters variation
Resumo:
INTRODUCTION Although several parameters have been proposed to predict the hemodynamic response to fluid expansion in critically ill patients, most of them are invasive or require the use of special monitoring devices. The aim of this study is to determine whether noninvasive evaluation of respiratory variation of brachial artery peak velocity flow measured using Doppler ultrasound could predict fluid responsiveness in mechanically ventilated patients. METHODS We conducted a prospective clinical research in a 17-bed multidisciplinary ICU and included 38 mechanically ventilated patients for whom fluid administration was planned due to the presence of acute circulatory failure. Volume expansion (VE) was performed with 500 mL of a synthetic colloid. Patients were classified as responders if stroke volume index (SVi) increased >or= 15% after VE. The respiratory variation in Vpeakbrach (DeltaVpeakbrach) was calculated as the difference between maximum and minimum values of Vpeakbrach over a single respiratory cycle, divided by the mean of the two values and expressed as a percentage. Radial arterial pressure variation (DeltaPPrad) and stroke volume variation measured using the FloTrac/Vigileo system (DeltaSVVigileo), were also calculated. RESULTS VE increased SVi by >or= 15% in 19 patients (responders). At baseline, DeltaVpeakbrach, DeltaPPrad and DeltaSVVigileo were significantly higher in responder than nonresponder patients [14 vs 8%; 18 vs. 5%; 13 vs 8%; P < 0.0001, respectively). A DeltaVpeakbrach value >10% predicted fluid responsiveness with a sensitivity of 74% and a specificity of 95%. A DeltaPPrad value >10% and a DeltaSVVigileo >11% predicted volume responsiveness with a sensitivity of 95% and 79%, and a specificity of 95% and 89%, respectively. CONCLUSIONS Respiratory variations in brachial artery peak velocity could be a feasible tool for the noninvasive assessment of fluid responsiveness in patients with mechanical ventilatory support and acute circulatory failure. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT00890071.
Resumo:
Different species of arbuscular mycorrhizal fungi (AMF) alter plant growth and affect plant coexistence and diversity. Effects of within-AMF species or within-population variation on plant growth have received less attention. High genetic variation exists within AMF populations. However, it is unknown whether genetic variation contributes to differences in plant growth. In our study, a population of AMF was cultivated under identical conditions for several generations prior to the experiments thus avoiding environmental maternal effects. We show that genetically different Glomus intraradices isolates from one AMF population significantly alter plant growth in an axenic system and in greenhouse experiments. Isolates increased or reduced plant growth meaning that plants potentially receive benefits or are subject to costs by forming associations with different individuals in the AMF population. This shows that genetic variability in AMF populations could affect host-plant fitness and should be considered in future research to understand these important soil organisms.
Resumo:
AimAlthough habitat suitability maps derived from species distribution models (SDMs) are often assumed to highlight locations that can sustain healthy populations over time, the relationship between suitability scores and fitness parameters has rarely been tested thoroughly. LocationZackenberg Valley, north-east Greenland. MethodsUsing 14years of data (1997-2010) representing three wader species (dunlin Calidris alpina, sanderling Calidris alba and ruddy turnstone Arenaria interpres), we tested the relationships between modelled suitability and fitness parameters at nesting locations. ResultsAmong the three species examined, only the ruddy turnstone exhibited significant relationships between suitability and nest success, but over time rather than space. During years with extensive snow cover in the landscape, the nesting sites of ruddy turnstone occurred in different habitats than were typically used across years. Moreover, in years with extensive snow cover, the ruddy turnstone initiated nests later and suffered from higher egg predation rates. Main conclusionOur results suggest that SDMs derived from species occurrences that include years of low reproductive success may over-estimate the potential suitable habitat in the landscape. Whenever possible, variation in reproductive success should be considered when building models to inform species' response to environmental change. species' response to environmental change.
Resumo:
This study analyses the evolution of liver disease in women with chronic hepatitis C during the third trimester of pregnancy and the post-partum period, as a natural model of immune modulation and reconstitution. Of the 122 mothers recruited to this study, 89 were HCV-RNA+ve/HIV-ve and 33 were HCV-RNA-ve/HIV-ve/HCVantibody+ve and all were tested during the third trimester of pregnancy, at delivery and post-delivery. The HCV-RNA+ve mothers were categorized as either Type-A (66%), with an increase in ALT levels in the post-partum period (>40 U/L; P<0.001) or as Type-B (34%), with no variation in ALT values. The Type-A mothers also presented a significant decrease in serum HCV-RNA levels in the post-delivery period (P<0.001) and this event was concomitant with an increase in Th1 cytokine levels (INFγ, P = 0.04; IL12, P = 0.01 and IL2, P = 0.01). On the other hand, the Type-B mothers and the HCV-RNA-ve women presented no variations in either of these parameters. However, they did present higher Th1 cytokine levels in the partum period (INFγ and IL2, P<0.05) than both the Type-A and the HCV-RNA-ve women. Cytokine levels at the moment of delivery do not constitute a risk factor associated with HCV vertical transmission. It is concluded that differences in the ALT and HCV-RNA values observed in HCV-RNA+ve women in the postpartum period might be due to different ratios of Th1 cytokine production. In the Type-B women, the high partum levels of Th1 cytokines and the absence of post-partum variation in ALT and HCV-RNA levels may be related to permanent Th1 cytokine stimulation.
Resumo:
Time-lapse geophysical data acquired during transient hydrological experiments are being increasingly employed to estimate subsurface hydraulic properties at the field scale. In particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates into the subsurface either by natural or artificial means, have been demonstrated in a number of studies to contain valuable information concerning the hydraulic properties of the unsaturated zone. Previous work in this domain has considered a variety of infiltration conditions and different amounts of time-lapse GPR data in the estimation procedure. However, the particular benefits and drawbacks of these different strategies as well as the impact of a variety of key and common assumptions remain unclear. Using a Bayesian Markov-chain-Monte-Carlo stochastic inversion methodology, we examine in this paper the information content of time-lapse zero-offset-profile (ZOP) GPR traveltime data, collected under three different infiltration conditions, for the estimation of van Genuchten-Mualem (VGM) parameters in a layered subsurface medium. Specifically, we systematically analyze synthetic and field GPR data acquired under natural loading and two rates of forced infiltration, and we consider the value of incorporating different amounts of time-lapse measurements into the estimation procedure. Our results confirm that, for all infiltration scenarios considered, the ZOP GPR traveltime data contain important information about subsurface hydraulic properties as a function of depth, with forced infiltration offering the greatest potential for VGM parameter refinement because of the higher stressing of the hydrological system. Considering greater amounts of time-lapse data in the inversion procedure is also found to help refine VGM parameter estimates. Quite importantly, however, inconsistencies observed in the field results point to the strong possibility that posterior uncertainties are being influenced by model structural errors, which in turn underlines the fundamental importance of a systematic analysis of such errors in future related studies.
Resumo:
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Resumo:
In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.
Resumo:
The species Sitobion graminis Takahashi, 1950 (Hemiptera, Aphididae) was first detected in Brazil in 1998, in Curitiba, Paraná state, associated with the grass species Erianthus sp., Calamagrotis sp. and Paspalum urvilei. Both the field-collected and laboratory-reared specimens presented a noticeable intrapopulational variation in body and appendix length and in dorso-abdominal sclerotization. This species has been recorded in Malaysia, New Guinea, India, Philippines and Africa, where it colonizes several species of Poaceae. S. graminis differs from other Sitobion species from Brazil associated with grasses, as it presents black cauda and siphunculi and exhibits a constriction in the base of the last rostral segment. Biological data were obtained in the laboratory by rearing newborn nymphs on the inflorescence of the host plants. They passed through four nymphal instars. The mean duration of the nymphal stage was of 11.4 days, with a mortality ratio of 36.5%. The mean pre-larviposition period was of 1.8 days; mean longevity of the females was 25.2 days; and mean fecundity was 18.7 nymphs/female, ranging from 2 to 41 nymphs/female.
Resumo:
In recent years, elevated arsenic concentrations have been found in waters and soils of many, countries, often resulting in a health threat for the local population. Switzerland is not an exception and this paper deals with the release and subsequent fate of arsenic in a 200-km(2) mountainous watershed, characterized by crystalline silicate rocks (gneisses, schists, amphibolites) that contain abundant As-bearing sulfide ore deposits, some of which have been mined for iron and gold in the past. Using analytical methods common for mineralogical, ground water and soil studies (XRD, XRF, XAS-XANES and -EXAFS, electron microprobe, extraction, ICP, AAS with hydride generator, ion chromatography), seven different field situations and related dispersion processes of natural arsenic have been studied: (1) release by rock weathering, (2) transport and deposition by water and ice; (3) release of As to the ground and surface water due to increasing pH; (4) accumulation in humic soil horizons; (5) remobilization by reduction in water-saturated soils and stagnant ground waters; (6) remobilization by using P-rich fertilizers or dung and (7) oxidation, precipitation and dilution in surface waters. Comparison of the results with experimental adsorption studies and speciation diagrams from the literature allows us to reconstruct and identify the typical behavior of arsenic in a natural environment under temperate climatic conditions. The main parameters identified are: (a) once liberated from the primary minerals, sorption processes on Fe-oxy-hydroxides dominate over Al-phases, such as Al-hydroxides or clay minerals and limit the As concentrations in the spring and well waters between 20 and 300 mug/l. (b) Precipitation as secondary minerals is limited to the weathering domain, where the As concentrations are still high and not yet too diluted by rain and soils waters. (c) Although neutral and alkaline pH conditions clearly increase the mobility of As, the main factor to mobilize As is a low redox potential (Eh close or below 0 mV), which favors the dissolution of the Fe-oxy-hydroxides on which the As is sorbed. (d) X-ray absorption spectroscopy (XAS) of As in water-logged humic forest soils indicates that the reduction to As III only occurs at the solid-water interface and that the solid contains As as As V (e) A and Bh horizons of humic cambisols can effectively capture As when As-rich waters flow through them. Complex spatial and temporal variation of the various parameters in a watershed results in repeated mobilization and immobilization of As, which continuously transports As from the upper to the lower part of a watershed and ultimately to the ocean. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity.
Resumo:
Temporal variation in the composition of ant assemblages (Hymenoptera, Formicidae) on trees in the Pantanal floodplain, Mato Grosso do Sul, Brazil. In this paper we investigate how seasonal flooding influences the composition of assemblages of ants foraging on trees in the Pantanal of Mato Grosso do Sul. During the flood in the Pantanal, a large area is covered by floods that are the main forces that regulate the pattern of diversity in these areas. However, the effects of such natural disturbances in the ant communities are poorly known. In this sense, the objective of this study was to evaluate the effect of temporal variation in assemblages of ants foraging on trees in the Pantanal of Miranda. Samples were collected during a year in two adjacent areas, one who suffered flooding during the wet period and another that did not suffer flooding throughout the year. In 10 sites for each evaluated habitat, five pitfall traps were installed at random in trees 25 m apart from each other. In the habitat with flooding, the highest richness was observed during the flooding period, while there was no significant change in richness in the area that does not suffer flooding. The diversity of species between the two evaluated habitats varied significantly during the two seasons. Most ants sampled belong to species that forage and nest in soil. This suggests that during the flood in flooded habitats, ants that did not migrate to higher areas without flooding adopt the strategy to search for resources in the tree canopy.
Resumo:
Although the criteria for defining erosion tolerance are well established, the limits generally used are not consistent with natural, economical and technological conditions. Rates greater than soil formation can be accepted only until a minimum of soil depth is reached, provided that they are not associated with environmental hazard or productivity losses. A sequence of equations is presented to calculate erosion tolerance rates through time. The selection of equation parameters permits the definition of erosion tolerance rates in agreement with environmental, social and technical needs. The soil depth change that is related to irreversible soil degradation can be calculated. The definition of soil erosion tolerance according to these equations can be used as a guideline for sustainable land use planning and is compatible with expert systems.
Resumo:
A quantitative model of water movement within the immediate vicinity of an individual root is developed and results of an experiment to validate the model are presented. The model is based on the assumption that the amount of water transpired by a plant in a certain period is replaced by an equal volume entering its root system during the same time. The model is based on the Darcy-Buckingham equation to calculate the soil water matric potential at any distance from a plant root as a function of parameters related to crop, soil and atmospheric conditions. The model output is compared against measurements of soil water depletion by rice roots monitored using γ-beam attenuation in a greenhouse of the Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo(ESALQ/USP) in Piracicaba, State of São Paulo, Brazil, in 1993. The experimental results are in agreement with the output from the model. Model simulations show that a single plant root is able to withdraw water from more than 0.1 m away within a few days. We therefore can assume that root distribution is a less important factor for soil water extraction efficiency.
Resumo:
The quality of semi-detailed (scale 1:100.000) soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90%) and soil texture class (> 80%). The purity for the "trophic character" (eutrophic, dystrophic, allic) was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained) and cation exchange capacity (≥ 50% of variance explained) of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little (< 15%) of the total variance in the study areas. Intermediate results were obtained for base saturation of the 60-80 cm layer (56% in Assis; 42% in Araras). Variance explained by taxonomic groupings that formed the basis for the legend of the soil maps was similar to, often even smaller than, variance explained by mapping units. The conclusion is that map boundaries have been very carefully located, but descriptions of mapping units could be improved. In future mappings, this could possibly be done at low cost by (a) bulk sampling to remove short range variation and enhance visualization of spatial patterns at distances > 100 m; (b) taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c) unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.