985 resultados para Skull - Abnormities and deformities
Resumo:
A vitamina C é essencial para dietas de peixe porque muitas espécies não conseguem sintetizá-la. Esta vitamina é necessária par a formação de cartilagem e matriz óssea. Além disso, age como antioxidante e melhora as resposta do sistema imunológico. O presente trabalho investigou os efeitos da suplementação de vitamina C em dietas para alevinos de pintado (Pseudoplatystoma corruscans) pela incidência de deformidades na estrutura óssea e cartilaginosa. O ascorbil polifosfato (AP) foi utilizado como fonte de vitamina C em dietas para alevinos de pintado durante o período de três meses. Seis dietas foram formuladas: uma dieta controle (0 mg de vitamina C / kg) e cinco dietas 500, 1.000, 1.500, 2.000 e 2.500 mg de AP / kg. Os peixes alimentados sem suplementação de vitamina C apresentaram deformidades óssea na cabeça e mandíbula e fragilidade de nadadeiras. Assim, a dieta de 500 mg de AP/kg foi suficiente para prevenir a ocorrência de deformidades, e a ausência desta vitamina prejudica o desenvolvimento ósseo de juvenis de pintados.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Procedures for the surgical correction of dentofacial deformities may produce important complications, whether due to the potential for vascular injury or to prolonged surgery, both of which may lead to severe blood loss. Fluid replacement with crystalloid, colloid, or even blood products may be required. The aim of this study was to assess blood loss and transfusion requirements in 45 patients (18 males and 27 females; mean age 29.29 years, range 16-52 years) undergoing orthognathic surgery, assigned to one of two groups according to procedure type-rapid maxillary expansion or double-jaw orthognathic surgery. Preoperative hemoglobin and hematocrit levels and intraoperative blood loss were measured. There was a substantial individual variation in pre- and postoperative hemoglobin values (10.3-17 and 8.8-15.4 g/dL, respectively; p < 0.05). Mean hematocrit values were 41.53 % preoperatively (range 31.3-50.0 %) and 36.56 % postoperatively (range 25-43.8 %) (p < 0.05). Mean blood loss was 274.60 mL (range 45-855 mL). Only two patients required blood transfusion. Although blood loss and transfusion requirements were minimal in the present study, surgical teams should monitor the duration of surgery and follow meticulous protocols to minimize the risks.
Resumo:
The cranial osteology of Micrastur gilvicollis (Vieillot, 1817), Micrastur ruficollis (Vieillot, 1817) and Micrastur semitorquatus (Vieillot, 1817) is comparatively and meticulously described to characterize each of the species and to determine which traits the species have in common and which are distinct. These traits will be used a posteriori for phylogenetic analysis. Our results indicate that M. gilvicollis and M. ruficollis are closely related, as they share a large number of traits, including a lacrimal bone with a distal portion that is approximately half as long as the proximal portion and a parasphenoid rostrum that covers 50% of the distance between the occipital condyle and pterygoid. Similarly, M. gilvicollis and M. semitorquatus both have a partially fused craniofacial flexion zone. In both M. ruficollis and M. semitorquatus, the symphyseal region of the mandible is 1/5 the total length of the mandible. The diagnostic traits for each of these species are as follows: a) in M. gilvicollis, the interorbital distance is 1/3 the length of the parietal, and the zygomatic process stretches 1/5 of the distance from the orbital arch to the jugal arch; b) in M. ruficollis, the interorbital distance is 2/5 of the length of the parietal and the zygomatic process extends 1/4 of the distance from the orbital arch to the jugal arch; and c) in M. semitorquatus, the interorbital distance is 3/7 the length of the parietal and the distal portion of the lacrimal is 1/3 the length of the proximal portion. Among the three species, M. gilvicolis and M. ruficollis share the most traits, which leads us to infer that these species are more closely related to one another than they are to M. semitorquatus. Phylogenetic analysis performed a posteriori may confirm the relationship between these three species.
Resumo:
The Black Sea is a semi-enclosed body of water that differs from the adjacent Mediterranean Sea in terms of its biodiversity, oceanographical and ecological characteristics. There is growing international concern about pollution in the Black Sea and other anthropogenic threats to its fauna. The bottlenose dolphin (Tursiops truncatus) is one of three species of cetaceans living in the Azov-Black Sea basin. Despite considerable research on bottlenose dolphins elsewhere, the extent of human impacts on the Black Sea populations is unknown. Previous attempts to award special conservation status to Black Sea cetaceans have failed specifically because policy makers have viewed their ecological and evolutionary uniqueness as equivocal. This study assessed divergence between Black Sea, Mediterranean Sea and Atlantic Ocean bottlenose dolphins for 26 cranial measurements (n = 75 adult bottlenose dolphin skulls) and mitochondrial DNA (n = 99 individuals). Black Sea bottlenose dolphins are smaller than those in the Mediterranean, and possess a uniquely shaped skull. As in a previous study, we found the Black Sea population to be genetically distinct, with relatively low levels of mtDNA diversity. Population genetic models suggest that Black Sea bottlenose dolphins have so little gene flow with the Mediterranean due to historical isolation that they should be managed separately.
Resumo:
Blast traumatic brain injury (BTBI) has become an important topic of study because of the increase of such incidents, especially due to the recent growth of improvised explosive devices (IEDs). This thesis discusses a project in which laboratory testing of BTBI was made possible by performing blast loading on experimental models simulating the human head. Three versions of experimental models were prepared – one having a simple geometry and the other two having geometry similar to a human head. For developing the head models, three important parts of the head were considered for material modeling and analysis – the skin, skull and brain. The materials simulating skin, skull and brain went through many testing procedures including dynamic mechanical analysis (DMA). For finding a suitable brain simulant, several materials were tested under low and high frequencies. Step response analysis, rheometry and DMA tests were performed on materials such as water based gels, oil based mixtures and silicone gels cured at different temperatures. The gelatins and silicone gels showed promising results toward their use as brain surrogate materials. Temperature degradation tests were performed on gelatins, indicating the fast degradation of gelatins at room temperature. Silicone gels were much more stable compared to the water based gels. Silicone gels were further processed using a thinner-type additive gel to bring the dynamic modulus values closer to those of human brain matter. The obtained values from DMA were compared to the values for human brain as found in literature. Then a silicone rubber brain mold was prepared to give the brain model accurate geometry. All the components were put together to make the entire head model. A steel mount was prepared to attach the head for testing at the end of the shock tube. Instrumentation was implemented in the head model to obtain effective results for understanding more about the possible mechanisms of BTBI. The final head model was named the Realistic Explosive Dummy Head or the “RED Head.” The RED Head offered potential for realistic experimental testing in blast loading conditions by virtue of its material properties and geometrical accuracy.
Resumo:
Patterns of geographic variation of the canid Cerdocyon thous have historically been obscured by its remarkable intraspecific morphological variability. The observed distribution is highly associated with phytophysiognomy, a feature considered highly dynamic along geological time. In the present study, we tested whether vegetation distribution during the Holocene Glacial Maximum of South America (HGM) explains the patterns of morphological variation within Cerdocyon thous. The species was divided in groups according to paleohabitats that could support their presence during the HGM, and then tested for differences in skull morphometrics. The results obtained demonstrate that the climatic changes during the HGM influenced the population structure of this species, resulting in the establishment of geographical groups with different degrees of morphological cohesion. Higher morphological cohesion found in the Northern group might be explained by the marked discontinuity between its geographical range and the rest of the species`distribution. The Eastern and Southern morphological divergence is less striking and, although this could be related to past vegetation distribution, the disappearance of those barriers leads to a population structure that could be slowly breaking down. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 77-84.
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
We used an assembly of electrodes C3 and C4-Cz in order to activate the motor cortical area of the corticobulbar tract to elucidate the motor-evoked potential of the contralateral mentalis muscle. We compared this setup to that of an assembly with electrodes C5 or C6-Cz using a train of electrical pulses and a single electrical pulse. This analysis was made in 23 consecutive patients who underwent several varied surgeries and were prospectively operated on at Santa Paula Hospital between January and June 2011. The results showed that the assembly with C5 or C6-Cz produced a multisynaptic motor-evoked potential in the contralateral mentalis muscle in 86.9 % of the patients, whereas 82.6 % of patients stimulated at points C3 or C4-Cz presented the same response. However, both assemblies showed similar behavior with the use of a single electrical pulse for peripheral contralateral nerve stimulation. We concluded that the C5 or C6-Cz assembly was similar to C3 or C4-Cz in obtaining a multisynaptic response in the contralateral mentalis muscle, although it required less intensive stimulation than the C3 or C4- Cz assembly.
Resumo:
The development of the cartilaginous and bony elements that form the skull and axial and appendicular skeleton is described in detail for the post-ovipositional embryonic development of the fossorial gymnophthalmid species Calyptommatus sinebrachiatus and Nothobachia ablephara. Both species have a snake-like morphology, showing an elongated body and reduced or absent limbs, as well as modifications in skull bones for burrowing, such as complex articulation surfaces and development of bony extensions that enclose and protect the brain. Similar morphological changes have originated independently in several squamate groups, including the one that led to the snake radiation. This study characterizes the patterns of chondrogenesis and osteogenesis, with special emphasis on the features associated with the burrowing habit, and may be used for future comparative analyses of the developmental patterns involved in the origin of the convergent serpentiform morphologies. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Trichomycterus anhanga is described from the Amazon basin, northern Brazil. The species is diagnosed by the latero-sensory system which is restricted to LL1 and LL2, the pectoral fin with two branched rays, the absence of pelvic fins and girdle, the reduced jaws and pharyngeal dentition, the presence of six to seven interopercular odontodes, the absence of a lateral series of spots, the presence of a small dark spot on the ventral surface of the mandibular symphysis, the narrow comma-shaped palatine, the absence of procurrent rays anterior to the dorsal and anal fins, the position of insertion of the first dorsal-fin pterygiophore and the presence of a single pair of pleural ribs. Trichomycterus anhanga shares with T. hasemani and T. johnsoni a wide cranial fontanel which occupies most of the skull roof. Miniaturization as well as synapomorphies for the T. hasemani group are discussed.
Resumo:
The evolutionary history of the lizard family Gymnophthalmidae is characterized by several independent events of morphological modifications to a snake-like body plan, such as limb reduction, body elongation, loss of external ear openings, and modifications in skull bones, as adaptive responses to a burrowing and fossorial lifestyle. The origins of such morphological modifications from an ancestral lizard-like condition can be traced back to evolutionary changes in the developmental processes that coordinate the building of the organism. Thus, the characterization of the embryonic development of gymnophthalmid lizards is an essential step because it lays the foundation for future studies aiming to understand the exact nature of these changes and the developmental mechanisms that could have been responsible for the evolution of a serpentiform (snake-like) from a lacertiform (lizard-like) body form. Here we describe the post-ovipositional embryonic development of the fossorial species Nothobachia ablephara and Calyptommatus sinebrachiatus, presenting a detailed staging system for each one, with special focus on the development of the reduced limbs, and comparing their development to that of other lizard species. The data provided by the staging series are essential for future experimental studies addressing the genetic basis of the evolutionary and developmental variation of the Gymnophthalmidae. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Pierre-Auguste Renoir (1841-1919), one of the world's most celebrated impressionist painters, suffered from rheumatoid arthritis for most of his life. His symptoms developed when he was in his 50s and they became aggressive at about the age of 60 years that led to almost complete disability when he was 70 years old. Although the deformities he suffered because of the rheumatoid arthritis were disabling, Renoir never stopped painting nor decreased the quality of his work. The transition between styles adopted by the painter (Impressionist, Dry and Pearly periods) bear no relationship to the stages of flare-ups or the establishment of joint deformities due to rheumatoid arthritis. His work shows aspects of the body's ability to overcome pain and physical limitation.