834 resultados para Silica-Coated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report selective optical reflectance in an aluminium (Al) coated flexible carbon nanotube (CNT) thin film over a wide range of wavelengths (500-2500 nm). Selective-wavelength surface is achieved by coating CNT surfaces with Al thin film that presented a maximum optical reflectivity of similar to 65% in the infrared region. However, CNT film alone showed a reflectance of 15-20% over a larger range of wavelengths without any structural modification, which has not been realized so far. Moreover, a tailorable reflectance in CNT is shown to be achieved by tuning various parameters, namely, the porosity of the material, angle of an incident light, and refractive index of the materials. Owing to higher infrared reflectivity and thermal diffusivity, Al coated CNT presents a potential for a high efficiency solar collector. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e. g., ultraviolet to infrared (0.2-200 mu m), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall elastic response of a bundle of coated cylinders is a major aspect of thermal, nuclear and automotive engineering designs. This paper extends the previous work on tubular bundles to assess the effect of coating material and thickness. A major contribution from this paper is determining the overall transverse elastic response of coated thick cylinders by extending the Michell stress function approach in conjunction with contact mechanics. Finite element results using contact elements pave the way for applying the contact stress boundary conditions for Michell analysis. Theoretical and finite element analyses overall give results consistent with the previous work, and the results also fall within the well-established Voigt-Reuss bounds. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-fine crystallites of Mn1-xZnxFe2O4 series (0 <= x <= 1) were synthesized through wet chemical co- precipitation method followed by calcination at 200 degrees C for 4 hours. Formation of ferrites was confirmed by X-ray diffraction, TEM selected area diffraction (SAD) and Fourier Transform Infra-red Spectroscopy (FTIR). Nanocrystallites of different compositions in the series were coated with biocompatible chitosan in order to investigate their possible application as contrast agent for magnetic resonance imaging (MRI). Chitosan coating examined by FTIR, revealed a strong bonding of chitosan molecules to the surface of the ferrite nanocrystallites. Spin-spin, tau(2) relaxivities of nuclear spins of hydrogen protons of the solutions for different ferrites were measured from concentration dependence of relaxation time by nuclear magnetic resonance (NMR). All the compositions of Mn1-xZnxFe2O4 series possess higher values of tau(2) relaxivity thus making them suitable as contrast agents for tau(2) weighted imaging by MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvinyl butyral/functionalized mesoporous silica hybrid composite films have been fabricated by solution casting technique with various weight percentages of functionalized silica. A polyol (tripentaerythritol-electron rich component), which acts as an electron donor to the polymer backbone, was added to enhance the conductivity. The prepared composites were characterized by Fourier transformed infrared spectroscopy and the morphology was evaluated by scanning electron microscopy. Dielectric properties of these freestanding composites were studied using the two-probe method. The dielectric constant and impedance value decreased with the increase in applied frequency as well as with the increase in functionalized silica content in the polyvinyl butyral matrix. An increase in conductivity of the PVB/functionalized silica composites was also observed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plain epoxy resins or resin impregnated cellulose have found application as electrical insulation in power equipment. In the past, their performance was improved by the use of inorganic oxide fillers of microscopic dimensions. In the recent past nano-particle doped epoxy insulation came into use with a view to further enhance the dielectric properties. This paper reports dielectric investigations into epoxy nano-composites based on a class of metal oxides, Al2O3 and SiO2. In particular, consideration has been given to the partial discharge performance and electrical breakdown under different voltage profiles as a function of the volumetric composition of the nano-particles in epoxy resin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that etched fiber Bragg gratings (eFBGs) coated with single walled carbon nanotubes (SWNTs) and graphene oxide (GO) are highly sensitive and accurate biochemical sensors. Here, for detecting protein concanavalin A (Con A), mannose-functionalized poly(propyl ether imine) (PETIM) dendrimers (DMs) have been attached to the SWNTs (or GO) coated on the surface modified eFBG. The dendrimers act as multivalent ligands, having specificity to detect lectin Con A. The specificity of the sensor is shown by a much weaker response (factor of similar to 2500 for the SWNT and similar to 2000 for the GO coated eFBG) to detect non specific lectin peanut agglutinin. DM molecules functionalized GO coated eFBG sensors showed excellent specificity to Con A even in the presence of excess amount of an interfering protein bovine serum albumin. The shift in the Bragg wavelength (Delta lambda(B)) with respect to the lambda(B) values of SWNT (or GO)-DM coated eFBG for various concentrations of lectin follows Langmuir type adsorption isotherm, giving an affinity constant of similar to 4 x 10(7) M-1 for SWNTs coated eFBG and similar to 3 x 10(8) M-1 for the GO coated eFBG. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.