944 resultados para Semantic fields
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
Selostus: Herukkaviljelmien ravinnetila
Resumo:
Enjeu et contexte de la recherche La dégénérescence lobaire fronto-temporale (DLFT) est une pathologie neurodégénérative aussi fréquente que la maladie d'Alzheimer parmi les adultes de moins de 65 ans. Elle recouvre une constellation de syndromes neuropsychiatriques et moteurs dont les caractéristiques cliniques et anatomo-pathologiques se recoupent partiellement. La plupart des cas de démence sémantique ne présentent pas de troubles moteurs et révèlent à l'autopsie des lésions ubiquitine-positives. Son association à un syndrome cortico-basal et à une tauopathie 4R est donc très inhabituelle. Le cas que nous présentons est le premier à disposer d'une description clinique complète, tant sur le plan cognitif que moteur, et d'une analyse génétique et histopathologique. Résumé de l'article Il s'agit d'un homme de 57 ans, sans antécédents familiaux, présentant une démence sémantique accompagnée de symptômes inhabituels dans ce contexte, tels qu'une dysfonction exécutive et en mémoire épisodique, une désorientation spatiale et une dyscalculie. Le déclin physique et cognitif fut rapidement progressif. Une année et demie plus tard, il développait en effet des symptômes moteurs compatibles initialement avec un syndrome de Richardson, puis avec un syndrome cortico-basal. Son décès survint à l'âge de 60 ans des suites d'une pneumonie sur broncho-aspiration. L'autopsie cérébrale mit en évidence une perte neuronale et de nombreuses lésions tau-4R-positives dans les lobes frontaux, pariétaux et temporaux, les ganglions de la base et le tronc cérébral. Aucune mutation pathologique n'a été décelée dans le gène MAPT (microtubule-associated protein tau). L'ensemble de ces éléments sont discutés dans le cadre des connaissances actuelles sur la DLFT. Conclusions et perspectives Ce cas illustre le recoupement important des différents syndromes de la DLFT, parfois appelée le « complexe de Pick ». De plus, la démence sémantique pourrait s'avérer cliniquement moins homogène que prévu. Les définitions actuelles de la démence sémantique omettent la description des symptômes cognitifs extra-sémantiques malgré l'accumulation de preuves de leur existence. La faible prévalence de la démence sémantique, ainsi que des différences dans les examens neuropsychologiques, peuvent expliquer en partie la raison de cette omission. La variabilité histopathologique de chaque phénotype de DLFT peut également induire des différences dans leur expression clinique. Dans un domaine aussi mouvant que la DLFT, la co- occurrence ou la succession de plusieurs syndromes cliniques est en outre probablement la règle plutôt que l'exception.
Resumo:
Selostus: Kolmas kevätviljapeltojen rikkakasvikartoitus
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Abstract
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.
Resumo:
This paper presents a new and original variational framework for atlas-based segmentation. The proposed framework integrates both the active contour framework, and the dense deformation fields of optical flow framework. This framework is quite general and encompasses many of the state-of-the-art atlas-based segmentation methods. It also allows to perform the registration of atlas and target images based on only selected structures of interest. The versatility and potentiality of the proposed framework are demonstrated by presenting three diverse applications: In the first application, we show how the proposed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In the second application, we estimate the position of nonvisible brain structures based on the surrounding structures and validate the results by comparing with other methods. In the final application, we present the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple registration forces can be used in this framework in an hierarchical manner.
Resumo:
En el presente artículo se ha desarrollado un sistema capaz de categorizar de forma automática la base de datos de imágenes que sirven de punto de partida para la ideación y diseño en la producción artística del escultor M. Planas. La metodología utilizada está basada en características locales. Para la construcción de un vocabulario visual se sigue un procedimiento análogo al que se utiliza en el análisis automático de textos (modelo 'Bag-of-Words'-BOW) y en el ámbito de las imágenes nos referiremos a representaciones 'Bag-of-Visual Terms' (BOV). En este enfoque se analizan las imágenes como un conjunto de regiones, describiendo solamente su apariencia e ignorando su estructura espacial. Para superar los inconvenientes de polisemia y sinonimia que lleva asociados esta metodología, se utiliza el análisis probabilístico de aspectos latentes (PLSA) que detecta aspectos subyacentes en las imágenes, patrones formales. Los resultados obtenidos son prometedores y, además de la utilidad intrínseca de la categorización automática de imágenes, este método puede proporcionar al artista un punto de vista auxiliar muy interesante.
Resumo:
Nowadays, when a user is planning a touristic route is very difficult to find out which are the best places to visit. The user has to choose considering his/her preferences due to the great quantity of information it is possible to find in the web and taking into account it is necessary to do a selection, within small time because there is a limited time to do a trip. In Itiner@ project, we aim to implement Semantic Web technology combined with Geographic Information Systems in order to offer personalized touristic routes around a region based on user preferences and time situation. Using ontologies it is possible to link, structure, share data and obtain the result more suitable for user's preferences and actual situation with less time and more precisely than without ontologies. To achieve these objectives we propose a web page combining a GIS server and a touristic ontology. As a step further, we also study how to extend this technology on mobile devices due to the raising interest and technological progress of these devices and location-based services, which allows the user to have all the route information on the hand when he/she does a touristic trip. We design a little application in order to apply the combination of GIS and Semantic Web in a mobile device.
Resumo:
Different vortex penetration regimes have been registered in the output voltage signal of a magnetometer when single microwave pulses are applied to an epitaxial overdoped La2− x Sr x CuO4 thin film in a perpendicular dc magnetic field. The onset of a significant variation in the sample magnetization which exists below threshold values of temperature, dc magnetic field, and pulse duration is interpreted as an avalanche-type flux penetration. The microwave contribution to the background electric field suggests that the nucleation of this fast vortex motion is of electric origin, which also guarantees the occurrence of vortex instabilities under adiabatic conditions via the enhancement of the flux flow resistivity. Flux creep phenomena and heat transfer effects act as stabilizing factors against the microwave-pulse-induced fast flux diffusion.
Hot spots for diversity of Magnaporthe oryzae physiological races in irrigated rice fields in Brazil
Resumo:
The objective of this work was to evaluate the Magnaporthe oryzae pathotype diversity in new commercial irrigated rice fields in the Araguaia River Valley, state of Tocantins, Brazil. The causal agent of rice blast has heavily affected rice production in the region. Despite the efforts of breeding programs, blast resistance breakdown has been recorded shortly after the release of new resistant cultivars developed for the region. Among the causes of resistance breakage is the capacity of the fungus to rapidly develop new pathotypes. A sample of 479 M. oryzae monosporic isolates was obtained and tested using the international rice blast differential set. Isolate collections were made in small areas designed as trap nurseries and in scattered sites in their vicinity. Analysis of 250 M. oryzae isolates from three trap nurseries indicated the presence of 45 international M. oryzae races belonging to seven pathotype groups (IA-IG). In the isolates tested, 61 M. oryzae pathotypes belonging to all but the IH group were detected. The new areas of irrigated rice in the Araguaia River Valley have the highest diversity of M. oryzae pathotypes reported so far in Brazil.