820 resultados para Search-based algorithms
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
A intenção deste trabalho é explorar dinâmicas de competição por meio de “simulação baseada em agentes”. Apoiando-se em um crescente número de estudos no campo da estratégia e teoria das organizações que utilizam métodos de simulação, desenvolveu-se um modelo computacional para simular situações de competição entre empresas e observar a eficiência relativa dos métodos de busca de melhoria de desempenho teorizados. O estudo também explora possíveis explicações para a persistência de desempenho superior ou inferior das empresas, associados às condições de vantagem ou desvantagem competitiva
Resumo:
Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
To enhance the global search ability of population based incremental learning (PBIL) methods, it is proposed that multiple probability vectors are to be included on available PBIL algorithms. The strategy for updating those probability vectors and the negative learning and mutation operators are thus re-defined correspondingly. Moreover, to strike the best tradeoff between exploration and exploitation searches, an adaptive updating strategy for the learning rate is designed. Numerical examples are reported to demonstrate the pros and cons of the newly implemented algorithm.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
To enhance the global search ability of Population Based Incremental Learning (PBIL) methods, It Is proposed that multiple probability vectors are to be Included on available PBIL algorithms. As a result, the strategy for updating those probability vectors and the negative learning and mutation operators are redefined as reported. Numerical examples are reported to demonstrate the pros and cons of the newly Implemented algorithm. ©2006 IEEE.
Resumo:
This paper discusses the main characteristics and presents a comparative analysis of three synchronization algorithms based respectively, on a Phase-Locked Loop, a Kalman Filter and a Discrete Fourier Transform. It will be described the single and three-phase models of the first two methods and the single-phase model of the third one. Details on how to modify the filtering properties or dynamic response of each algorithm will be discussed in terms of their design parameters. In order to compare the different algorithms, these parameters will be set for maximum filter capability. Then, the dynamic response, during input amplitude and frequency deviations will be observed, as well as during the initialization procedure. So, advantages and disadvantages of all considered algorithms will be discussed. ©2007 IEEE.
Resumo:
This paper discusses two pitch detection algorithms (PDA) for simple audio signals which are based on zero-cross rate (ZCR) and autocorrelation function (ACF). As it is well known, pitch detection methods based on ZCR and ACF are widely used in signal processing. This work shows some features and problems in using these methods, as well as some improvements developed to increase their performance. © 2008 IEEE.
Resumo:
We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.