891 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS
Resumo:
Cette thèse se compose en deux parties: Première Partie: La conception et la synthèse d’analogues pyrrolidiniques, utilisés comme agents anticancéreux, dérivés du FTY720. FTY720 est actuellement commercialisé comme médicament (GilenyaTM) pour le traitement de la sclérose en plaques rémittente-récurrente. Il agit comme immunosuppresseur en raison de son effet sur les récepteurs de la sphingosine-1-phosphate. A fortes doses, FTY720 présente un effet antinéoplasique. Cependant, à de telles doses, un des effets secondaires observé est la bradycardie dû à l’activation des récepteurs S1P1 et S1P3. Ceci limite son potentiel d’utilisation lors de chimiothérapie. Nos précédentes études ont montré que des analogues pyrrolidiniques dérivés du FTY720 présentaient une activité anticancéreuse mais aucune sur les récepteurs S1P1 et S1P3. Nous avons soumis l’idée qu’une étude relation structure-activité (SARs) pourrait nous conduire à la découverte de nouveaux agents anti tumoraux. Ainsi, deux séries de composés pyrrolidiniques (O-arylmethyl substitué et C-arylmethyl substitué) ont pu être envisagés et synthétisés (Chapitre 1). Ces analogues ont montré d’excellentes activités cytotoxiques contre diverses cellules cancéreuses humaines (prostate, colon, sein, pancréas et leucémie), plus particulièrement les analogues actifs qui ne peuvent pas être phosphorylés par SphK, présentent un plus grand potentiel pour le traitement du cancer sans effet secondaire comme la bradycardie. Les études mécanistiques suggèrent que ces analogues de déclencheurs de régulation négative sur les transporteurs de nutriments induisent une crise bioénergétique en affamant les cellules cancéreuses. Afin d’approfondir nos connaissances sur les récepteurs cibles, nous avons conçu et synthétisé des sondes diazirine basées sur le marquage d’affinité aux photons (méthode PAL: Photo-Affinity Labeling) (Chapitre 2). En s’appuyant sur la méthode PAL, il est possible de récolter des informations sur les récepteurs cibles à travers l’analyse LC/MS/MS de la protéine. Ces tests sont en cours et les résultats sont prometteurs. Deuxième partie: Coordination métallique et catalyse di fonctionnelle de dérivés β-hydroxy cétones tertiaires. Les réactions de Barbier et de Grignard sont des méthodes classiques pour former des liaisons carbone-carbone, et généralement utilisées pour la préparation d’alcools secondaires et tertiaires. En vue d’améliorer la réaction de Grignard avec le 1-iodobutane dans les conditions « one-pot » de Barbier, nous avons obtenu comme produit majoritaire la β-hydroxy cétone provenant de l’auto aldolisation de la 5-hexen-2-one, plutôt que le produit attendu d’addition de l’alcool (Chapitre 3). La formation inattendue de la β-hydroxy cétone a également été observée en utilisant d’autres dérivés méthyl cétone. Étonnement dans la réaction intramoléculaire d’une tricétone, connue pour former la cétone Hajos-Parrish, le produit majoritaire est rarement la β-hydroxy cétone présentant la fonction alcool en position axiale. Intrigué par ces résultats et après l’étude systématique des conditions de réaction, nous avons développé deux nouvelles méthodes à travers la synthèse sélective et catalytique de β-hydroxy cétones spécifiques par cyclisation intramoléculaire avec des rendements élevés (Chapitre 4). La réaction peut être catalysée soit par une base adaptée et du bromure de lithium comme additif en passant par un état de transition coordonné au lithium, ou bien soit à l’aide d’un catalyseur TBD di fonctionnel, via un état de transition médiée par une coordination bidenté au TBD. Les mécanismes proposés ont été corroborés par calcul DFT. Ces réactions catalytiques ont également été appliquées à d’autres substrats comme les tricétones et les dicétones. Bien que les efforts préliminaires afin d’obtenir une enantioselectivité se sont révélés sans succès, la synthèse et la recherche de nouveaux catalyseurs chiraux sont en cours.
Resumo:
The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Mobius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Further-more, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide.
Resumo:
Highly selective N-type voltage-gated calcium (Ca-V) channel inhibitors from cone snail venom (the omega-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt ( Elan) or synthetic omega-conotoxin MVIIA, was the first omega-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three omega-conotoxins, GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved N-type therapeutics that are more useful in the treatment of chronic pain.
Resumo:
Venomous species have evolved cocktails of bioactive peptides to facilitate prey capture. Given their often exquisite potency and target selectivity, venom peptides provide unique biochemical tools for probing the function of membrane proteins at the molecular level. in the field of the nicotinic acetylcholine receptors (nAChRs), the subtype specific snake alpha-neurotoxins and cone snail alpha-conotoxins have been widely used to probe receptor structure and function in native tissues and recombinant systems. However, only recently has it been possible to generate an accurate molecular view of these nAChR-toxin interactions. Crystal structures of AChBP, a homologue of the nAChR ligand binding domain, have now been solved in complex with alpha-cobratoxin, alpha-conotoxin PnIA and alpha-conotoxin Iml. The orientation of all three toxins in the ACh binding site confirms many of the predictions obtained from mutagenesis and docking simulations on homology models of mammalian nAChR. The precise understanding of the molecular determinants of these complexes is expected to contribute to the development of more selective nAChR modulators. In this commentary, we review the structural data on nAChR-toxin interactions and discuss their implications for the design of novel ligands acting at the nAChR. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Highly selective Cav2.2 voltage-gated calcium channel (VGCC) inhibitors have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Cone snail venoms provided the first drug in class with FDA approval granted in 2005 to Prialt (ω-conotoxin MVIIA, Elan) for the treatment of neuropathic pain. Since this pioneering work, major efforts underway to develop alternative small molecule inhibitors of Cav2.2 calcium channel have met with varied success. This review focuses on the properties of the Cav2.2 calcium channel in different pain states, the action of ω-conotoxins GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved Cav2.2 calcium channel therapeutics, and finally the development of small molecules for the treatment of chronic pain.
Resumo:
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.
Resumo:
1. Structure-activity relationships for the binding of human α-calcitonin gene-related peptide 8-37 (hαCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (hαCGRP stimulation of adenylate cyclase). 2. On SK-N-MC cells the potency order was hαCGRP8-37 > hαCGRP19-37 = AC187 > rat amylin8-37 > hα[Tyr0]-CGRP28-37 (apparent pKBS of 7.49 ± 0.25, 5.89 ± 0.20, 6.18 ± 0.19, 5.85 ± 0.19 and 5.25 ± 0.07). The SK-N-MC receptor appeared CGRP1-like. 3. On Col 29 cells, only hαCGRP8-37 of the above compounds was able to antagonize the actions of hαCGRP (apparent pKB = 6.48 ± 0.28). Its receptor appeared CGRP2-like. 4. hα[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal α-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than hαCGRP8-37. 5. On SK-N-MC cells, hαCGRP(8-18, 28-37) (M433) and mastoparan-hαCGRP28-37 (M432) had apparent pKBS of 6.64 ± 0.16 and 6.42 ± 0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. 6. M433 was almost as potent as hαCGRP8-37 on Col 29 cells (apparent pKB = 6.17 ± 0.20). Other antagonists were inactive.
Resumo:
Tissue transglutaminase (TG2) is a Ca2+-dependent enzyme and probably the most ubiquitously expressed member of the mammalian transglutaminase family. TG2 plays a number of important roles in a variety of biological processes. Via its transamidating function, it is responsible for the cross-linking of proteins by forming isopeptide bonds between glutamine and lysine residues. Intracellularly, Ca2+ activation of the enzyme is normally tightly regulated by the binding of GTP. However, upregulated levels of TG2 are associated with many disease states like celiac sprue, certain types of cancer, fibrosis, cystic fibrosis, multiple sclerosis, Alzheimer's, Huntington's and Parkinson's disease. Selective inhibitors for TG2 both cell penetrating and non-cell penetrating would therefore serve as novel therapeutic tools for the treatment of these disease states. Moreover, they would provide useful tools to fully elucidate the cellular mechanisms TG2 is involved in and help comprehend how the enzyme is regulated at the cellular level. The current paper is intended to give an update on the recently discovered classes of TG2 inhibitors along with their structure-activity relationships. The biological properties of these derivatives, in terms of both activity and selectivity, will also be reported in order to translate their potential for future therapeutic developments. © 2011 Springer-Verlag.
Resumo:
Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NNG CorT (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.
Resumo:
Dipeptides can be absorbed into cells via the dipeptide transporter (which also transported tripeptides and dipeptide derivatives). The optimum conditions for measuring the inhibition of Gly-Pro uptake in Caco-2 cells were identified. A number of structure-activity relationships were identified. These included the effects of increasing the amino-acid chain-length, and the presence of a thiol or hydroxyl group in the side-chain increased IC50 while the presence of a hydroxyl group did not. The benzyl esters had lower or equal IC50 values compared to the parent dipeptides while the methyl esters had higher values. These results indicated that while molecular properties did affect IC50, the size, charge and composition of three particular groups caused the most significant effects, supporting the structure-activity relationship identified. An assay was developed using calcein-AM to show the inhibition of p-glycoprotein activity. There was no significant change due to the presence of mannitol but there was in the presence of clyclosporin A (p<0.01). Incubating the cells with the test solution for 30 minutes before the addition of the ester resulted in a significant (p<0.001) difference. The assay was specific for p-glycoprotein, as the presence MRP inhibitors had no effect (p>0.05). The modified protocol allowed the identification of p-glycoprotein inhibitors quickly and simply using a cell suspension of unmodified cells. The clinically relevant buffering of grapefruit juice to pH 7 led to a four-fold increase in intracellular calcein and hence significant inhibition of p-glycoprotein. Buffered orange and lemon juices had no effect on the assay. Flavone derivatives had previously been found to be inhibitors of CYP3A4 yet neither naringin nor naringenin had any significant effect at concentrations found in grapefruit juice. Of the other (non-grapefruit) flavone derivatives tested, hesperidin, found in orange juice, had no significant effect, kaempferol and rutin also had no effect while genistein significantly inhibited p-glycoprotein (results that support previous studies). Hydroxycinnamic acids had no effect on p-glycoprotein. Studies on other compounds found that the balance between inhibiting p-glycoprotein and disrupting cell membranes depends on the compound containing an oxygen atom and the size of the negative charge on it, as well as three-dimensional arrangement of the atoms.
Resumo:
The principles of High Performance Liquid Chromatography (HPLC) and pharmacokinetics were applied to the use of several clinically-important drugs at the East Birmingham Hospital. Amongst these was gentamicin, which was investigated over a two-year period by a multi-disciplinary team. It was found that there was considerable intra- and inter-patient variation that had not previously been reported and the causes and consequences of such variation were considered. A detailed evaluation of available pharmacokinetic techniques was undertaken and 1- and 2-compartment models were optimised with regard to sampling procedures, analytical error and model-error. The implications for control of therapy are discussed and an improved sampling regime is proposed for routine usage. Similar techniques were applied to trimethoprim, assayed by HPLC, in patients with normal renal function and investigations were also commenced into the penetration of drug into peritoneal dialysate. Novel assay techniques were also developed for a range of drugs including 4-aminopyridine, chloramphenicol, metronidazole and a series of penicillins and cephalosporins. Stability studies on cysteamine, reaction-rate studies on creatinine-picrate and structure-activity relationships in HPLC of aminopyridines are also reported.
Resumo:
The aims of this study were to examine the binding characteristics of the rat CGRP receptor and to further the classification of CGRP and amylin receptors in guinea-pig tissue preparations. Binding characteristics of CGRP were investigated on rat splenic, cerebellar and liver membrane preparations. Human-α-CGRP, rat-α-CGRP and the CGRP receptor analogues Tyrº -CGRPC28-37) and [Cys (ACM)2,7 ]-human CGRP and the CGRP receptor antagonist CGRPC8-37) were utilised in competitive radioligand binding experiments to identify possible CGRP receptor subtypes in these tissues. There appeared to be no significant differences between the rat CGRP receptors examined. A panel of monoclonal antibodies (Mabs) raised against CGRP were employed to investigate the structure-activity relationships of CGRP and its receptor. No differences between the tissue receptors were observed using this panel of Mabs. The effects of human-α, human-β, rat-α-CGRP, human and rat amylin and adrenomedullin(13-52) were examined on the spontaneously beating right atria and on electrically evoked twitch contractions of isolated guinea-pig ileum, vas deferens and left atria. All of the peptides caused concentration-dependent inhibition of twitch amplitude in the ileum and vas deferens. CGRP produced positive inotropic effects in the right and left atria and positive chronotropic effects in the right atria. A variety of CGRP receptor antagonists and putative amylin receptor antagonists were used to antagonise these effects. CGRP(8-37) is currently used as a basis for CGRP receptor classification (Dennis, et al., 1989). Based upon results obtained using CGRP(8-37) it has been shown that the guinea-pig ileum contains mainly CGRP 1 receptors and the vas deferens contain CGRP2 receptors. Amylin was shown to act at receptors distinct from those for CGRP and it is postulated that amylin has its own receptors in these preparations. Experiments using CGRP (19-37) and Tyrº -CGRP(28-37) indicate that human and rat CGRP act at distinct receptors in guinea-pig ileum and vas deferens. The amylin receptor antagonist amylin(8-37) and the putative antagonist AC187 provide evidence to suggest human and rat amylin also act at receptors able to distinguish between the two types of amylin.
Resumo:
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient P (commonly expressed in logarithm form: logP), is useful for screening out unsuitable molecules and also for the development of predictive Quantitative Structure-Activity Relationships (QSARs). In this paper we develop a new approach to the prediction of LogP values for peptides based on an empirical relationship between global molecular properties and measured physical properties. Our method was successful in terms of peptide prediction (total r2 = 0.641). The final model consisted of 5 physicochemical descriptors (molecular weight, number of single bonds, 2D-VDW volume, 2D-VSA hydrophobic and 2D-VSA polar). The approach is peptide specific and its predictive accuracy was high. Overall, 67% of the peptides were able to be predicted within +/-0.5 log units from the experimental values. Our method thus represents a novel prediction method with proven predictive ability.