989 resultados para Reinforcement materials
Resumo:
This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.
Resumo:
(Equation Presented). A series of star-shaped organic semiconductors have been synthesized from 1,3,6,8-tetrabromopyrene. The materials are soluble in common organic solvents allowing for solution processing of devices such as light-emitting diodes (OLEDs). One of the materials, 1,3,6,8-tetrakis(4- butoxyphenyl)pyrene, has been used as the active emitting layer in simple solution-processed OLEDs with deep blue emission (CIE = 0.15, 0.18) and maximum efficiencies and brightness levels of 2.56 cd/A and >5000 cd/m2, respectively.
Resumo:
This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.
Resumo:
Current practice based research explores the organic properties of edible materials such as rice-paper to contemplate possible material usage from garment manufacture, landscape interventions and temporary architectural canopies/facades. Research outcomes have been published through The International Conference on Designing Food and Designing for Food, London 2012, and in Burke, Anthony + Reinmuth, Gerard (Eds.) (2012) 'Formations: New Practices in Australian Architecture.' Australian Pavilion 13th International Architecture Exhibition la biennale di Venezia.
Resumo:
In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.
Resumo:
Materials, methods and systems are provided for the purifn., filtration and/or sepn. of certain mols. such as certain size biomols. Certain embodiments relate to supports contg. at least one polymethacrylate polymer engineered to have certain pore diams. and other properties, and which can be functionally adapted to for certain purifications, filtrations and/or sepns. Biomols. are selected from a group consisting of: polynucleotide mols., oligonucleotide mols. including antisense oligonucleotide mols. such as antisense RNA and other oligonucleotide mols. that are inhibitory of gene function such as small interfering RNA (siRNA), polypeptides including proteinaceous infective agents such as prions, for example, the infectious agent for CJD, and infectious agents such as viruses and phage.
Resumo:
Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment.
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.
Resumo:
Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications