977 resultados para Rats, Wistar
Resumo:
Heart failure (HF) is characterized by a skeletal muscle myopathy with increased expression of fast myosin heavy chains (MHCs). The skeletal muscle-specific molecular regulatory mechanisms controlling MHC expression during HF have not been described. Myogenic regulatory factors (MRFs), a family of transcriptional factors that control the expression of several skeletal muscle-specific genes, may be related to these alterations. This investigation was undertaken in order to examine potential relationships between MRF mRNA expression and MHC protein isoforms in Wistar rat skeletal muscle with monocrotaline-induced HF. We studied soleus (Sol) and extensor digitorum longus (EDL) muscles from both HF and control Wistar rats. MyoD, myogenin and MRF4 contents were determined using reverse transcription-polymerase chain reaction while MHC isoforms were separated using polyacrylamide gel electrophoresis. Despite no change in MHC composition of Wistar rat skeletal muscles with HF, the mRNA relative expression of MyoD in Sol and EDL muscles and that of MRF4 in Sol muscle were significantly reduced, whereas myogenin was not changed in both muscles. This down-regulation in the mRNA relative expression of MRF4 in Sol was associated with atrophy in response to HF while these alterations were not present in EDL muscle. Taken together, our results show a potential role for MRFs in skeletal muscle myopathy during HF. © 2006 Blackwell Science Ltd.
Resumo:
Quercetin, a typical bioflavonoid ubiquitously present in fruits and vegetables, is considered to be helpful for human health. Cisplatin (cDDP) is one of the most active cytotoxic agents in the treatment of a wide range of solid tumors. The aim of this study was to investigate the possible effect of quercetin, a bioflavonoid with antioxidant potential, on cisplatin-induced nophrotoxicity and lipid peroxidation in rats. Gavage administrations of water, propylene glycol and quercetin (50 mg/kg) were made 24 and 1 h before saline or cDDP (5 mg/kg) ip injections and were repeated daily for 2, 5 or 20 subsequent days. Rats were killed 2, 5 and 20 days after ip injections, and blood and urine samples were collected to determine plasma creatinine, urine volume and osmolality. The kidneys were removed to determine the levels of thiobarbituric acid-reactive substances (TBARS) and for histological studies. Cisplatin increased lipid peroxidation, urine volume and plasma creatinine levels and decreased urine osmolality. Treatment with quercetin attenuated these alterations. These results demonstrate the role of oxidative stress and suggest a protective effect of quercetin on cisplatin-induced nephrotoxicity in adult Wistar rats. Copyright © 2006 by Institute of Pharmacology Polish Academy of Sciences.
Resumo:
Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA. © 2006 Pharmaceutical Society of Japan.
Resumo:
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a major role in extracellular matrix component degradation in several normal and abnormal tissue situations; they are also found in human seminal plasma. MMPs have been found in rat prostate secretions and are nearly lobe specific in expression pattern. The aim of this study was to evaluate whether TIMP-2, like other semen components, is expressed differently from different rat prostatic lobes. Immunohistochemical staining was performed in both young and adult rat ventral (VP), lateral (LP), dorsal (DP), and anterior (AP) prostatic lobes and confirmed by western blotting. TIMP-2 expression was found in the epithelial cells in the following sequence: LP > AP > DP > VP, in both young and adult rats. In this study, 100% of adult LP presented histological signs of prostatitis, where TIMP-2 immunostaining was positive in normal epithelium even with intraluminal neutrophils, but was reduced or absent in the epithelium with intraepithelial leukocytes or with periductal stroma disorganization associated with mononuclear cell infiltration. However, TIMP-2 expression in LP was not induced by prostatitis, since younger rat LPs were also strongly TIMP-2 positive. The distal and intermediate VP regions were TIMP-2 negative, but the proximal regions were strongly stained. Western blotting results confirmed the high TIMP-2 expression in the LP lobe. Thus, TIMP-2 is expressed differently between the prostatic lobes and is another nearly lobe-specific protein, which plays a role in the regulation of MMP activity in seminal plasma and glandular homeostasis. TIMP-2 is also another regional ductal variation of VP. Further studies should address whether TIMP-2 expression is related to the highest incidence of rat LP prostatitis and adenocarcinoma. © 2006 International Federation for Cell Biology.
Resumo:
Objective: The purpose of this study was to analyze histologically the influence of bioactive glass (BG) with or without a calcium sulfate (CS) barrier on bone healing in surgically created critical-size defects (CSD) in rat calvaria. Material and methods: A CSD was made in each calvarium of 48 rats. They were divided into three groups: C (control): blood clot only; BG: defect filled with BG; and BG/CS: defect filled with BG covered by a CS barrier. Animals were euthanized at 4 or 12 weeks. Formation of new bone was evaluated histomorphometrically. Results: No defect completely regenerated with bone. BG particles were observed in Groups BG and BG/CS at both periods of analysis. The thickness throughout the healing area in Groups BG and BG/CS was similar to the original calvarium, while Group C presented a thin connective tissue in the center of the defect in both periods of analysis. At 4 weeks, Groups C and BG/CS presented significantly more bone formation than Group BG. No significant differences were found between Groups C and BG/CS. At 12 weeks, no significant differences in the amount of bone formation were observed among the three groups. When comparing 4 and 12 weeks, there was a significant increase in new bone formation within groups BG and BG/CS, but not C. Conclusion: BG particles, used with or without a CS barrier, maintained the volume and contour of the area grafted in CSD. However, they did not lead to a significant difference in bone formation when compared with control at 12 weeks post-operative. © 2007 Blackwell Munksgaard.
Resumo:
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (- log EC50) nor maximal responses (Emax) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23 ± 0.06) compared to SD/IR group (7.85 ± 0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75 ± 0.06 and TR/IR: 6.62 ± 0.04) compared to SD/SHAM (7.33 ± 0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place. © 2006 Elsevier Inc. All rights reserved.
Resumo:
In this study, the antiulcerogenic effect of essential oil from Baccharis dracunculifolia was evaluated using the model of acute gastric lesions induced by ethanol. The ulcerative lesion index (ULI) was significantly reduced by oral administration of the essential oil of B. dracunculifolia at doses of 50, 250 and 500 mg/kg which reduced the lesions by 42.79, 45.70 and 61.61%, respectively. The analysis of the chemical composition of the essential oil from B. dracunculifolia by GC showed that this was composed mainly of mono- and sesquiterpenes and the majority compound was nerolidol. Therefore, antiulcerogenic activity of nerolidol (50, 250 and 500 mg/kg) was investigated using ethanol-, indomethacin- and stress-induced ulcer models in rat. In the stress-induced ulcer model, a significant reduction of the ULI in animals treated with nerolidol (50, 250 and 500 mg/kg) and cimetidine (100 mg/kg) was observed, compared to the control group (p < 0.05). The percentage of inhibition of ulcer was 41.22, 51.31, 56.57 and 53.50% in groups treated with 50, 250, 500 mg/kg of nerolidol and 100 mg/kg of cimetidine (positive control), respectively. Regarding ethanol- and indomethacin-induced ulcer models, it was observed that the treatment with nerolidol (250 and 500 mg/kg) significantly reduced the ULI in comparison with the control group (p < 0.05). The dose of 50 mg/kg reduced the parameters analyzed but this was not statistically significant. In the ethanol-induced model percentage of inhibition of ulcer was 34.20, 52.63, 87.63 and 50.87% in groups treated with 50, 250, 500 mg/kg of nerolidol and 30 mg/kg of omeprazol (positive control), respectively. In indomethacin-ulcer the percentage of inhibition of ulcer was 34.69, 40.80, 51.02 and 46.93% in groups treated with 50, 250, 500 mg/kg of nerolidol and 100 mg/kg of cimetidine (positive control), respectively. The results of this study show that nerolidol displays antiulcer activity, as it significantly inhibited the formation of ulcers induced in different animal models. However, further pharmacological and toxicological investigations, to delineate the mechanism(s) of action and the toxic effects, are required to allow the use of nerolidol for the treatment of gastric ulcer. © 2007 Verlag der Zeitschrift für Naturforschung.
Resumo:
Obese insulin resistant animals and humans have shown reduced GLUT4 gene expression. Yet, in skeletal muscle, discrepancy between mRNA and protein regulation has been frequently observed, suggesting a post-transcriptional modulation. We investigated the GLUT4 expression in adipose tissue and muscle of obese 12-month-old (12-mo) rats, comparing with lean 2-month-old (2-mo) animals. Obesity was accompanied by insulin resistance, and 65% reduction (P < 0.01) in GLUT4 mRNA and protein in adipose tissue. However, in muscle, despite increased (P < 0.05) mRNA content, GLUT4 protein was unchanged. RNase H and poly(A) test assays showed a reduction (P < 0.01) of ∼80 adenines in the GLUT4 mRNA poly(A) tail of muscle from 12-mo rats, recognizing that the poly(A) tail length correlates with translation efficiency. Concluding, age related obesity of 12-mo rats involves suppression of GLUT4 expression in adipose tissue; however, in muscle, GLUT4 mRNA content increases, but with a shorter poly(A) tail, thus unchanging the protein content. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Methanolic (VPME) and chloroformic (VPCL) extracts, obtained from the aerial parts of Vernonia polyanthes, were investigated for its antiulcerogenic properties. Administration of VPME (250 mg/kg) and VPCL (50 mg/kg) significantly inhibited the gastric mucosa damage (64% and 90%, respectively) caused by absolute ethanol (p.o.). Otherwise, in NSAID-induced gastric damage, their gastroprotective effects have decreased. Since the VPCL extract resulted to be more effective than the VPME we focused our efforts over VPCL action mechanism of action. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Bone decalcification is a time-consuming process. It takes weeks and preservation of the tissue structure depends on the quality and velocity of the demineralization process. In the present study, a decalcification methodology was adapted using microwaving to accelerate the decalcification of rat bone for electron microscopic analysis. The ultrastructure of the bone decalcified by microwave energy was observed. Wistar rats were perfused with paraformaldehyde and maxillary segments were removed and fixed in glutaraldehyde. Half of specimens were decalcified by conventional treatment with immersion in Warshawsky solution at 4oC during 45 days, and the other half of specimens were placed into the beaker with 20 mL of the Warshawsky solution in ice bath and thereafter submitted to irradiation in a domestic microwave oven (700 maximum power) during 20 s/350 W/±37°C. In the first day, the specimens were irradiated 9 times and stored at 40°C overnight. In the second day, the specimens were irradiated 20 times changing the solution and the ice after each bath. After decalcification, some specimens were postfixed in osmium tetroxide and others in osmium tetroxide and potassium pyroantimonate. The specimens were observed under transmission electron microscopy. The results showed an increase in the decalcification rate in the specimens activated by microwaving and a reduction of total experiment time from 45 days in the conventional method to 48 hours in the microwave-aided method.
Resumo:
In the present study, we investigate whether mast cells and macrophages are involved in the control of IL-1β-induced neutrophil migration, as well as the participation of chemotactic mediators. IL-1β induced a dose-dependent neutrophil migration to the peritoneal cavity of rats which depends on LTB 4, PAF and cytokines, since the animal treatment with inhibitors of these mediators (MK 886, PCA 4248 and dexamethasone respectively) inhibited IL-1β-induced neutrophil migration. The neutrophil migration induced by IL-1β is dependent on mast cells and macrophages, since depletion of mast cells reduced the process whereas the increase of macrophage population enhanced the migration. Moreover, mast cells or macrophages stimulated with IL-1β released a neutrophil chemotactic factor, which mimicked the neutrophil migration induced by IL-1β. The chemotactic activity of the supernatant of IL-1β-stimulated macrophages is due to the presence of LTB4, since MK 886 inhibited its release. Moreover, the chemotactic activity of IL-1β-stimulated mast cells supernatant is due to the presence of IL-1β and TNF-α, since antibodies against these cytokines inhibited its activity. Furthermore, significant amounts of these cytokines were detected in the supernatant. In conclusion, our results suggest that neutrophil migration induced by IL-1β depends upon LTB4 released by macrophages and upon IL-1β and TNFα released by mast cells. © 2007 Springer Science+Business Media, LLC.
Resumo:
We investigated the effects of doxazosin (Dox), an alpha-adrenoceptor antagonist used clinically for the treatment of benign prostatic hyperplasia (BPH), on the rat prostatic complex by assessing structural parameters, collagen fiber content, cell proliferation, and apoptosis. Adult Wistar rats were treated with Dox (25 mg/kg per day), and the ventral (VP), dorsolateral, and anterior prostate (AP) regions of the prostate complex were excised at 3, 7, and 30 days after treatment. At 24 h before being killed, the rats were injected once with 5-bromodeoxyuridine (BrdU; thymidine analog) to label mitotically active cells. The prostates were weighed and processed for histochemistry, morphometry-stereology, immunohistochemistry for BrdU, Western blotting for proliferating cell nuclear antigen (PCNA), and the TUNEL reaction for apoptosis. Dox-treated prostate lobes at day 3 presented increased weight, an enlarged ductal lumen, low cubical epithelial cells, reduced epithelial folds, and stretched smooth muscle cells. However, at day 30, the prostates exhibited a weight reduction of ∼20% and an increased area of collagen and reticular fibers in the stromal space. Dox also reduced epithelial cell proliferation and increased apoptosis in the three prostatic lobes. Western blotting for PCNA confirmed the reduction of cell proliferation by Dox, with the AP and VP being more affected than the dorsal prostate. Thus, Dox treatment alters epithelial cell behavior and prostatic tissue mechanical demand, inducing tissue remodeling in which collagen fibers assume a major role. © 2007 Springer-Verlag.
Resumo:
Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.
Resumo:
Coumarins represent an important class of phenolic compounds with multiple biological activities, including inhibition of lipidic peroxidation and neutrophil-dependent anion superoxide generation, anti-inflammatory and immunosuppressor actions. All of these proprieties are essential for that a drug may be used in the treatment of inflammatory bowel disease. The present study examined intestinal anti-inflammatory activity of coumarin and its derivative, the 4-hydroxycoumarin on experimental ulcerative colitis in rats. This was performed in two different experimental settings, i.e. when the colonic mucosa is intact or when the mucosa is in process of recovery after an initial insult. The results obtained revealed that the coumarin and 4-hydroxycoumarin, at doses of 5 and 25 mg/kg, significantly attenuated the colonic damage induced by trinitrobenzenesulphonic acid (TNBS) in both situations, as evidenced macroscopically, microscopically and biochemically. This effect was related to an improvement in the colonic oxidative status, since coumarin and 4-hydroxycoumarin prevented the glutathione depletion that occurred as a consequence of the colonic inflammation. © 2008 Pharmaceutical Society of Japan.
Resumo:
The present study evaluated the effects of histamine 10 -2 M on longitudinal preparations of rat portal vein. It was observed that histamine 10 -2 M induced relaxation of rat portal vein preparations pre-contracted with phenylephrine 10 -4 M. On the other hand, no pharmacological effects were observed in preparations not pre-contracted. The observed histamine-induced relaxing effect was absent in preparations pre-contracted with KCl (120 mM) or in the presence of depolarizing nutritive solution. However, the histamine-induced relaxation was still present in the endothelium-removed preparations. The histamine-induced relaxation also was not prevented by astemizole (10 -6 M, 10 -5 M and 10 -4 M), cimetidine (10 -5 M, 10 -4 M and 10 -3 M) or thioperamide (10 -6 M, 10 -5 M and 10 -4 M), selective antagonists H 1, H 2 and H 3, respectively. The presence of L-NAME 10 -4 M or L-NAME 10 -4 M plus indomethacin 10 -5 M also did not prevent the histamine-induced relaxation observed in rat portal vein. Thus, the histamine-induced relaxation observed in rat portal vein appears to involve a non-endothelial hyperpolarizing mechanism independent of H 1, H 2 and H 3 receptors.