918 resultados para Random Regret Minimization
Resumo:
Wireless sensor networks can often be viewed in terms of a uniform deployment of a large number of nodes in a region of Euclidean space. Following deployment, the nodes self-organize into a mesh topology with a key aspect being self-localization. Having obtained a mesh topology in a dense, homogeneous deployment, a frequently used approximation is to take the hop distance between nodes to be proportional to the Euclidean distance between them. In this work, we analyze this approximation through two complementary analyses. We assume that the mesh topology is a random geometric graph on the nodes; and that some nodes are designated as anchors with known locations. First, we obtain high probability bounds on the Euclidean distances of all nodes that are h hops away from a fixed anchor node. In the second analysis, we provide a heuristic argument that leads to a direct approximation for the density function of the Euclidean distance between two nodes that are separated by a hop distance h. This approximation is shown, through simulation, to very closely match the true density function. Localization algorithms that draw upon the preceding analyses are then proposed and shown to perform better than some of the well-known algorithms present in the literature. Belief-propagation-based message-passing is then used to further enhance the performance of the proposed localization algorithms. To our knowledge, this is the first usage of message-passing for hop-count-based self-localization.
Resumo:
We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.
Resumo:
Using the spectral multiplicities of the standard torus, we endow the Laplace eigenspaces with Gaussian probability measures. This induces a notion of random Gaussian Laplace eigenfunctions on the torus (''arithmetic random waves''). We study the distribution of the nodal length of random eigenfunctions for large eigenvalues, and our primary result is that the asymptotics for the variance is nonuniversal. Our result is intimately related to the arithmetic of lattice points lying on a circle with radius corresponding to the energy.
Resumo:
Identical parallel-connected converters with unequal load sharing have unequal terminal voltages. The difference in terminal voltages is more pronounced in case of back-to-back connected converters, operated in power-circulation mode for the purpose of endurance tests. In this paper, a synchronous reference frame based analysis is presented to estimate the grid current distortion in interleaved, grid-connected converters with unequal terminal voltages. Influence of carrier interleaving angle on rms grid current ripple is studied theoretically as well as experimentally. Optimum interleaving angle to minimize the rms grid current ripple is investigated for different applications of parallel converters. The applications include unity power factor rectifiers, inverters for renewable energy sources, reactive power compensators, and circulating-power test set-up used for thermal testing of high-power converters. Optimum interleaving angle is shown to be a strong function of the average of the modulation indices of the two converters, irrespective of the application. The findings are verified experimentally on two parallel-connected converters, circulating reactive power of up to 150 kVA between them.
Resumo:
Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. The LC dynamics are being captured using multi-resolution remote sensing (RS) data with appropriate classification strategies. RS data with important environmental layers (either remotely acquired or derived from ground measurements) would however be more effective in addressing LC dynamics and associated changes. These ancillary layers provide additional information for delineating LC classes' decision boundaries compared to the conventional classification techniques. This communication ascertains the possibility of improved classification accuracy of RS data with ancillary and derived geographical layers such as vegetation index, temperature, digital elevation model (DEM), aspect, slope and texture. This has been implemented in three terrains of varying topography. The study would help in the selection of appropriate ancillary data depending on the terrain for better classified information.
Resumo:
In this paper, we explore noise-tolerant learning of classifiers. We formulate the problem as follows. We assume that there is an unobservable training set that is noise free. The actual training set given to the learning algorithm is obtained from this ideal data set by corrupting the class label of each example. The probability that the class label of an example is corrupted is a function of the feature vector of the example. This would account for most kinds of noisy data one encounters in practice. We say that a learning method is noise tolerant if the classifiers learnt with noise-free data and with noisy data, both have the same classification accuracy on the noise-free data. In this paper, we analyze the noise-tolerance properties of risk minimization (under different loss functions). We show that risk minimization under 0-1 loss function has impressive noise-tolerance properties and that under squared error loss is tolerant only to uniform noise; risk minimization under other loss functions is not noise tolerant. We conclude this paper with some discussion on the implications of these theoretical results.
Resumo:
For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.
Resumo:
We propose an eigenvalue based technique to solve the Homogeneous Quadratic Constrained Quadratic Programming problem (HQCQP) with at most three constraints which arise in many signal processing problems. Semi-Definite Relaxation (SDR) is the only known approach and is computationally intensive. We study the performance of the proposed fast eigen approach through simulations in the context of MIMO relays and show that the solution converges to the solution obtained using the SDR approach with significant reduction in complexity.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
We consider multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected edges whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate.
Resumo:
Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.
Resumo:
In this paper, we propose a quantum method for generation of random numbers based on bosonic stimulation. Randomness arises through the path-dependent indeterministic amplification of two competing bosonic modes. We show that the process provides an efficient method for macroscopic extraction of microscopic randomness.
Resumo:
The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America
Resumo:
Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.
Resumo:
We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of fourfold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one-dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one-dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.