943 resultados para Quantitative trait locus (QTL)
Resumo:
International audience
Resumo:
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 x 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 x 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 x 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.
Resumo:
STUDY QUESTION: Do DNA variants in the growth regulation by estrogen in breast cancer 1 (GREB1) region regulate endometrial GREB1 expression and increase the risk of developing endometriosis in women? SUMMARY ANSWER: We identified new single nucleotide polymorphisms (SNPs) with strong association with endometriosis at the GREB1 locus although we did not detect altered GREB1 expression in endometriosis patients with defined genotypes. WHAT IS ALREADY KNOWN: Genome-wide association studies have identified the GREB1 region on chromosome 2p25.1 for increasing endometriosis risk. The differential expression of GREB1 has also been reported by others in association with endometriosis disease phenotype. STUDY DESIGN, SIZE, DURATION: Fine mapping studies comprehensively evaluated SNPs within the GREB1 region in a large-scale data set (>2500 cases and >4000 controls). Publicly available bioinformatics tools were employed to functionally annotate SNPs showing the strongest association signal with endometriosis risk. Endometrial GREB1 mRNA and protein expression was studied with respect to phases of the menstrual cycle (n = 2-45 per cycle stage) and expression quantitative trait loci (eQTL) analysis for significant SNPs were undertaken for GREB1 [mRNA (n = 94) and protein (n = 44) in endometrium]. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants in this study are females who provided blood and/or endometrial tissue samples in a hospital setting. The key SNPs were genotyped using Sequenom MassARRAY. The functional roles and regulatory annotations for identified SNPs are predicted by various publicly available bioinformatics tools. Endometrial GREB1 expression work employed qRT-PCR, western blotting and immunohistochemistry studies. MAIN RESULTS AND THE ROLE OF CHANCE: Fine mapping results identified a number of SNPs showing stronger association (0.004 < P < 0.032) with endometriosis risk than the original GWAS SNP (rs13394619) (P = 0.034). Some of these SNPs were predicted to have functional roles, for example, interaction with transcription factor motifs. The haplotype (a combination of alleles) formed by the risk alleles from two common SNPs showed significant association (P = 0.026) with endometriosis and epistasis analysis showed no evidence for interaction between the two SNPs, suggesting an additive effect of SNPs on endometriosis risk. In normal human endometrium, GREB1 protein expression was altered depending on the cycle stage (significantly different in late proliferative versus late secretory, P < 0.05) and cell type (glandular epithelium, not stromal cells). However, GREB1 expression in endometriosis cases versus controls and eQTL analyses did not reveal any significant changes. LIMITATIONS, REASONS FOR CAUTION: In silico prediction tools are generally based on cell lines different to our tissue and disease of interest. Functional annotations drawn from these analyses should be considered with this limitation in mind. We identified cell-specific and hormone-specific changes in GREB1 protein expression. The lack of a significant difference observed following our GREB1 expression studies may be the result of moderate power on mixed cell populations in the endometrial tissue samples. WIDER IMPLICATIONS OF THE FINDINGS: This study further implicates the GREB1 region on chromosome 2p25.1 and the GREB1 gene with involvement in endometriosis risk. More detailed functional studies are required to determine the role of the novel GREB1 transcripts in endometriosis pathophysiology. STUDY FUNDING/COMPETING INTERESTS: Funding for this work was provided by NHMRC Project Grants APP1012245, APP1026033, APP1049472 and APP1046880. There are no competing interests.
Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs
Resumo:
Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 x 10(-)(7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 x 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
Resumo:
Sorghum grown in India in the post-rainy season (Rabi) relies on residual soil moisture, and the crop is commonly exposed to terminal drought stress. But there is a ready market for its high-quality grain and stover (used as fodder on dairy farms). Steps to improve productivity while maintaining quality offer an attractive opportunity for sorghum farmers to improve their incomes. Genetically improving the efficiency of using stored soil moisture is a prime target to maximise grain/stover production and quality of Rabi sorghum. This project aims to achieve this through the application of DNA sequences known as quantitative trait loci (QTLs). The project scientists will introduce marker-assisted introgression of stay-green QTLs into sorghum lines, enhancing both the quality and the quantity of grain/stover of postrainy sorghum. They will also use modelling to identify the key physiological traits involved in a higher, more stable yield across water-limited environments of India and Australia, and the key stay-green QTLs contributing to these traits. The publicly available QTL isolines lines developed in this project will be the basis of new varieties to be bred in a subsequent phase.
Resumo:
For complex disease genetics research in human populations, remarkable progress has been made in recent times with the publication of a number of genome-wide association scans (GWAS) and subsequent statistical replications. These studies have identified new genes and pathways implicated in disease, many of which were not known before. Given these early successes, more GWAS are being conducted and planned, both for disease and quantitative phenotypes. Many researchers and clinicians have DNA samples available on collections of families, including both cases and controls. Twin registries around the world have facilitated the collection of large numbers of families, with DNA and multiple quantitative phenotypes collected on twin pairs and their relatives. In the design of a new GWAS with a fixed budget for the number of chips, the question arises whether to include or exclude related individuals. It is commonly believed to be preferable to use unrelated individuals in the first stage of a GWAS because relatives are 'over-matched' for genotypes. In this study, we quantify that for GWAS of a quantitative phenotype, relative to a sample of unrelated individuals surprisingly little power is lost when using relatives. The advantages of using relatives are manifold, including the ability to perform more quality control, the choice to perform within-family tests of association that are robust to population stratification, and the ability to perform joint linkage and association analysis. Therefore, the advantages of using relatives in GWAS for quantitative traits may well outweigh the small disadvantage in terms of statistical power.
Resumo:
Familial typical migraine is a common, complex disorder that shows strong familial aggregation. Using latent-class analysis (LCA), we identified subgroups of people with migraine/severe headache in a community sample of 12,245 Australian twins (60% female), drawn from two cohorts of individuals aged 23-90 years who completed an interview based on International Headache Society criteria. We report results from genomewide linkage analyses involving 756 twin families containing a total of 790 independent sib pairs (130 affected concordant, 324 discordant, and 336 unaffected concordant for LCA-derived migraine). Quantitative-trait linkage analysis produced evidence of significant linkage on chromosome 5q21 and suggestive linkage on chromosomes 8, 10, and 13. In addition, we replicated previously reported typical-migraine susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23, the latter being within 3 cM of the rare autosomal dominant familial hemiplegic migraine gene (ATP1A2), a finding which potentially implicates ATP1A2 in familial typical migraine for the first time. Linkage analyses of individual migraine symptoms for our six most interesting chromosomes provide tantalizing hints of the phenotypic and genetic complexity of migraine. Specifically, the chromosome 1 locus is most associated with phonophobia; the chromosome 5 peak is predominantly associated with pulsating headache; the chromosome 6 locus is associated with activity-prohibiting headache and photophobia; the chromosome 8 locus is associated with nausea/vomiting and moderate/severe headache; the chromosome 10 peak is most associated with phonophobia and photophobia; and the chromosome 13 peak is completely due to association with photophobia. These results will prove to be invaluable in the design and analysis of future linkage and linkage disequilibrium studies of migraine.
Resumo:
A study was performed to investigate the value of near infrared reflectance spectroscopy (NIRS) as an alternate method to analytical techniques for identifying QTL associated with feed quality traits. Milled samples from an F6-derived recombinant inbred Tallon/Scarlett population were incubated in the rumen of fistulated cattle, recovered, washed and dried to determine the in-situ dry matter digestibility (DMD). Both pre- and post-digestion samples were analysed using NIRS to quantify key quality components relating to acid detergent fibre, starch and protein. This phenotypic data was used to identify trait associated QTL and compare them to previously identified QTL. Though a number of genetic correlations were identified between the phenotypic data sets, the only correlation of most interest was between DMD and starch digested (r = -0.382). The significance of this genetic correlation was that the NIRS data set identified a putative QTL on chromosomes 7H (LOD = 3.3) associated with starch digested. A QTL for DMD occurred in the same region of chromosome 7H, with flanking markers fAG/CAT63 and bPb-0758. The significant correlation and identification of this putative QTL, highlights the potential of technologies like NIRS in QTL analysis.
Resumo:
Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotype x environment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs.
Resumo:
Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.
Resumo:
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
Resumo:
Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.
Resumo:
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.