941 resultados para Pure spinor
Resumo:
The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.
Resumo:
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S=1 Heisenberg model with biquadratic interaction.
Resumo:
This manuscript illustrates that the geometric arrangement of protein-binding groups around a ruthenium(II) core leads to dramatic differences in cytochrome c (cyt c) binding highlighting that it is possible to define synthetic receptors with shape complementarity to protein surfaces.
Resumo:
The Heisenberg model for spin-1 bosons in one dimension presents many different quantum phases, including the famous topological Haldane phase. Here we study the robustness of such phases in front of a SU(2) symmetry-breaking field as well as the emergence of unique phases. Previous studies have analyzed the effect of such uniaxial anisotropy in some restricted relevant points of the phase diagram. Here we extend those studies and present the complete phase diagram of the spin-1 chain with uniaxial anisotropy. To this aim, we employ the density-matrix renormalization group together with analytical approaches. The complete phase diagram can be realized using ultracold spinor gases in the Mott insulator regime under a quadratic Zeeman effect.
Resumo:
Ionic conductivities of twelve protic ionic liquids (PILs) and their mixtures with water over the whole composition range are reported at 298.15 K and atmospheric pressure. The selected PILs are the pyrrolidinium-based PILs containing nitrate, acetate or formate anions; the formate-based PILs containing diisopropylethylammonium, amilaminium, quinolinium, lutidinium or collidinium cations; and the pyrrolidinium alkylcarboxylates, [Pyrr][CnH2n+1COO] with n = 5–8. This study was performed in order to investigate the influence of molecular structures of the ions on the ionic conductivities in aqueous solutions. The ionic conductivities of the aqueous solutions are 2–30 times higher than the conductivities of pure PILs. The maximum in conductivity varies from ww=0.41???to???0.74 and is related to the nature of cations and anions. The molar conductance and the molar conductance at infinite dilution for (PIL + water) solutions are then determined. Self-diffusion coefficients of the twelve protic ionic liquids in water at infinite dilution and at 298.15 K are calculated by using the Nernst–Haskell, the original and the modified Wilke–Chang equations. These calculations show that similar values are obtained using the modified Wilke–Chang and the Nernst–Haskell equations. Finally, the effective hydrodynamic (or Stokes) radius of the PILs was determined by using the Stokes–Einstein equation. A linear relationship was established in order to predict this radius as a function of the anion alkyl chain length in the case of the pyrrolidinium alkylcarboxylates PILs.