969 resultados para Pseudo-secondorder kinetics model
Resumo:
Red pepper is rich in vitamin C and other phytochemicals and can be consumed as a dehydrated product. The evaluation of the best drying conditions can ensure a better quality product. This study aimed to investigate the effect of air temperature (55, 65, and 75 ºC) on drying kinetics of red peppers and on vitamin C, total phenolic content, and color of dried pepper as compared to the fresh product. Dehydration was carried out in a forced convection oven. Drying kinetics was determined by periodic weighting until constant weight. The moisture content of the fresh pepper was approximately 86%. The drying curves were fitted to three different models available in the literature. The Page model showed the best fit for this process. Analysis of variance revealed that the air drying temperature significantly influenced (p < 0.05) the quality parameters (vitamin C content, total phenolic content, and color) of the dried pepper as compared to the fresh pepper. After drying, the vitamin C retention increased with reduced air-drying temperature. In general, products dried at lower temperatures exhibited better quality due to reduced losses of bioactive compounds.
Resumo:
The hydration kinetics of transgenic corn types flint DKB 245PRO, semi-flint DKB 390PRO, and dent DKB 240PRO was studied at temperatures of 30, 40, 50, and 67 °C. The concentrated parameters model was used, and it fits the experimental data well for all three cultivars. The chemical composition of the corn kernels was also evaluated. The corn cultivar influenced the initial rate of absorption and the water equilibrium concentration, and the dent corn absorbed more water than the other cultivars at the four temperatures analyzed. The effect of hydration on the kernel texture was also studied, and it was observed that there was no significant difference in the deformation force required for all three corn types analyzed with longer hydration period.
Resumo:
Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.
Resumo:
The general solution behaviour and" the major fragmentation pathways of the anticanceractive PtIV coordination complexes, trans, trans, cis, cis-[PtCIOH{N(pFC6F4) CH2h(pY)2] (1), trans, cis, cis-[Pt(OH)2{N(p-FC6F4)CH2h(Py)2] (2), trans, cis, cis-[Pt(OH)2{N(p-HC6F4)CH2h(Py)2] (3), trans, trans, cis, cis-[PtCIOH{N(pHC6F4) CH2h(Py)2] (4), and trans, trans, cis, cis-[PtOH(OCH3){N(p-HC6F4)CH2h(PY)2] (5) (Py = pyridine) have been deduced by positive-ion tandem-in-time ESI-MS. Overall, the acquired full-scan, positive-ion ESI-MS spectra of 2, 3, and 5 were characterized by the presence of relatively low-intensity [M+Nar and [M+Kt mass spectral peaks, whereas those of 1 and 4 were dominated by extremely intense [M+Hr peaks. Complexes 2 and 3 were also noted to form [2M+Ht and [2M+Nat dilneric cations. The source of Na + and K+ ions is believed to be the sample, the solvent systems used or the transport line carrying the sample solutions into the ES ion source. Further, the fragmentation pathway of all complexes studied was found to be almost identical with concurrent loss of py and H20 molecules, loss of a {N(p-YC6F4)CH2} (Y = F, H) group and/or concomitant release of the latter group and a py ligand being the most conunon. The photochemical degradation behaviour of 1 and 2 was also investigated using either fluorescent or ultraviolet light and some products of that degradation were positively identified. Altogether, light irradiation of solutions of both complexes resulted in cation cationisation, reductive-elimination, ligand-release, ligand-exchange and ligand-addition reactions. Finally, positive- and negative-ion ESI-MSn spectra of 5' -GMP, guanosine, inosine and products of their reactions with 1, 2,3, and 4 were also recorded. On the whole, full-scan ESI-MS spectra of the pure nucleobases revealed the presence of cationic and anionic species that are highly reflective of both their solution ionic composition and their propensity t9 form polymeric clusters. Analyses of mass spectra acquired from their reaction solutions with the aforementioned platinum complexes indicated very slow kinetics. However, all complexes investigated formed, to various degrees, Pt-nucleobase adducts with guanosine and inosine, but not with 5'-GMP. The products included species having coordination numbers of III, IV, V, and VI, among which the first-time· observed, coordinatively saturated, jive-coordinate PtlI-nucleobase complexes were of most interest. The latter complexes are presumably stabilized by 7tback- donation involving the filled d orbitals of the PtII centre and the empty pz· orbital of MeCN. All products, whose peaks appeared inlull-scan ESI-MS spectra, are believed to represent solution species rather than artifacts of gas-phase processes. Finally, negativeion ESI-MSn spectra recorded in reaction solutions of 1 and 4 with guanosine and of the latter complex with inosine revealed the negative-ion-ESI-MS first-time observed, noncovalent, nucleoside-chloride adducts, with the source of chloride anion being complexes 1 and 4 theillselves. In contrast, no such adducts were observed to form with Na25'-GMP or its protonated fonn. Few suggestions are offered for the possible cause(s) behind the absence of such adduct ions.
Resumo:
Several Authors Have Discussed Recently the Limited Dependent Variable Regression Model with Serial Correlation Between Residuals. the Pseudo-Maximum Likelihood Estimators Obtained by Ignoring Serial Correlation Altogether, Have Been Shown to Be Consistent. We Present Alternative Pseudo-Maximum Likelihood Estimators Which Are Obtained by Ignoring Serial Correlation Only Selectively. Monte Carlo Experiments on a Model with First Order Serial Correlation Suggest That Our Alternative Estimators Have Substantially Lower Mean-Squared Errors in Medium Size and Small Samples, Especially When the Serial Correlation Coefficient Is High. the Same Experiments Also Suggest That the True Level of the Confidence Intervals Established with Our Estimators by Assuming Asymptotic Normality, Is Somewhat Lower Than the Intended Level. Although the Paper Focuses on Models with Only First Order Serial Correlation, the Generalization of the Proposed Approach to Serial Correlation of Higher Order Is Also Discussed Briefly.
Resumo:
The mechanism of devulcanization of sulfur-vulcanized natural rubber with aromatic disulfides and aliphatic amines has been studied using 23-dimethyl-2-butene (C5H1,) as a low-molecular weight model compound. First C6H12 was vulcanized with a mixture of sulfur, zinc stearate and N-cyclohexyl-2-benzothiazylsulfenamide (CBS) as accelerator at 140 °C, resulting in a mixture of addition products (C(,H 1 i-S,-C5H 1 i ). The compounds were isolated and identified by High Performance Liquid Chromatography (HPLC) with respect to their various sulfur ranks. In it second stage, the vulcanized products were devulcanized using the agents mentioned above at 200 °C. The kinetics and chemistry of the breakdown of the sulfur-hridges were monitored. Both devulcanization agents decompose sulfidic vulcanization products with sulfur ranks equal or higher than 3 quite effectively and with comparable speed. Di phenyldisulfide as devulcanization agent gives rise to a high amount of mono- and disulfidic compounds formed during the devulcanization, hexadecylamine, as devulcanization agent, prevents these lower sulfur ranks from being formed.
Studies on Pseudoscalar Meson Bound States and Semileptonic Decays in a Relativistic Potential Model
Resumo:
In this thesis quark-antiquark bound states are considered using a relativistic two-body equation for Dirac particles. The mass spectrum of mesons includes bound states involving two heavy quarks or one heavy and one light quark. In order to analyse these states within a unified formalism, it is desirable to have a two-fermion equation that limits to one body Dirac equation with a static interaction for the light quark when the other particle's mass tends to infinity. A suitable two-body equation has been developed by Mandelzweig and Wallace. This equation is solved in momentum space and is used to describe the complete spectrum of mesons. The potential used in this work contains a short range one-gluon exchange interaction and a long range linear confining and constant potential terms. This model is used to investigate the decay processes of heavy mesons. Semileptonic decays are more tractable since there is no final state interactions between the leptons and hadrons that would otherwise complicate the situation. Studies on B and D meson decays are helpful to understand the nonperturbative strong interactions of heavy mesons, which in turn is useful to extract the details of weak interaction process. Calculation of form factors of these semileptonic decays of pseudo scalar mesons are also presented.
Resumo:
Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.
Resumo:
A simple numerical model which calculates the kinetics of crystallization involving randomly distributed nucleation and isotropic growth is presented. The model can be applied to different thermal histories and no restrictions are imposed on the time and the temperature dependences of the nucleation and growth rates. We also develop an algorithm which evaluates the corresponding emerging grain-size distribution. The algorithm is easy to implement and particularly flexible, making it possible to simulate several experimental conditions. Its simplicity and minimal computer requirements allow high accuracy for two- and three-dimensional growth simulations. The algorithm is applied to explore the grain morphology development during isothermal treatments for several nucleation regimes. In particular, thermal nucleation, preexisting nuclei, and the combination of both nucleation mechanisms are analyzed. For the first two cases, the universal grain-size distribution is obtained. The high accuracy of the model is stated from its comparison to analytical predictions. Finally, the validity of the Kolmogorov-Johnson-Mehl-Avrami model SSSR, is verified for all the cases studied
Resumo:
Reaction Injection Moulding (RIM) is a moulding technology used for the production of large size and complex plastic parts. The RIM process is characterized essentially by the injection of a highly reactive chemical system (usually polyurethane) and fast cure, in a mould properly closed and thermally controlled. Several studies show that rapid manufacturing moulds obtained in epoxy resins for Thermoplastic Injection Moulding (TIM) affect the moulding process and the final properties of parts. The cycle time and mechanical properties of final parts are reduced, due to a low thermal conductivity of epoxy materials. In contrast, the low conductivity of materials usually applied for the rapid manufacturing of RIM moulds, increase the mechanical properties of final injected parts and reduce the cycle time. This study shows the effect of the rapid manufacturing moulds material during the RIM process. Several materials have been tested for rapid manufacturing of RIM moulds and the analysis of both, temperature profile of moulded parts during injection and the cure data experimentally obtained in a mixing and reaction cell, allow to determine and model the real effect of the mould material on the RIM process.
Resumo:
It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7,14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In areas such as drug development, clinical diagnosis and biotechnology research, acquiring details about the kinetic parameters of enzymes is crucial. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. We demonstrate that a Bayesian approach (the use of prior knowledge) can produce major gains quantifiable in terms of information, productivity and accuracy of each experiment. Developing the use of Bayesian Utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has enabled the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-M and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In the past two decades, the geometric pathways involved in the transformations between inverse bicontinuous cubic phases in amphiphilic systems have been extensively theoretically modeled. However, little experimental data exists on the cubic-cubic transformation in pure lipid systems. We have used pressure-jump time-resolved X-ray diffraction to investigate the transition between the gyroid Q(II)(G) and double-diamond Q(II)(D) phases in mixtures of 1-monoolein in 30 wt% water. We find for this system that the cubic-cubic transition occurs without any detectable intermediate structures. In addition, we have determined the kinetics of the transition, in both the forward and reverse directions, as a function of pressure-jump amplitude, temperature, and water content. A recently developed model allows (at least in principle) the calculation of the activation energy for lipid phase transitions from such data. The analysis is applicable only if kinetic reproducibility is achieved, at least within one sample, and achievement of such kinetic reproducibility is shown here, by carrying out prolonged pressure-cycling. The rate of transformation shows clear and consistent trends with pressure-jump amplitude, temperature, and water content, all of which are shown to be in agreement with the effect of the shift in the position of the cubic-cubic phase boundary following a change in the thermodynamic parameters.
Resumo:
The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).
Resumo:
A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.