942 resultados para Power Relationships
Resumo:
Recent and current socio-cultural trends are significant factors impacting on how business is conduced and correspondingly, on how work environments are designed. New communication technology is helping to break physical boundaries and change the way and speed of conducting business. One of the main characteristics of these new workplaces is non-permanency wherein the individual employee has no dedicated personally assigned office, work station, or desk. In this non-territorial, nomadic situation, employees undertake their work tasks in a wide variety of work settings inside and outside the office building. Such environments are understood to be must suitable where there is the need for high interaction with others as well as a high level of concentrated, independent work. This thesis reports on a project designed to develop a deeper understanding of the relationships between people (P) and their built environment (E) in the context of everyday work practice in a nomadic and non-territorial work environment. To achieve this, the study focuses on the experiences of employees as they understand them in relation to their work and the designed/ physical work environment. In this sense, the study is qualitative and grounded in nature. It does not assume any previously established theory nor test any presenting hypothesis. Instead it interviews the participants about their situations at work in their workplace, interprets natural interaction and creates a foundation for the development of theory informing workplace design, particularly theory that recognises the human nature of work and the need, as highlighted by several seminal researchers, for a greater understanding of how people manage and adapt in dynamic work environments.
Resumo:
Coastal communities face the social, cultural and environmental challenges of managing rapid urban and industrial development, expanding tourism, and sensitive ecological environments. Enriching relationships between communities and universities through a structured engagement process can deliver integrated options towards sustainable coastal futures. This process draws on the embedded knowledge and values of all participants in the relationship, and offers a wide and affordable range of options for the future. This paper reviews lessons learnt from two projects with coastal communities, and discusses their application in a third. Queensland University of Technology has formed collaborative partnerships with industry in Queensland's Wide Bay-Burnett region to undertake a series of planning and design projects with community engagement as a central process. Senior students worked with community and produced design and planning drawings and reports outlining future options for project areas. A reflective approach has been adopted by the authors to assess the engagement process and outcomes of each project to learn lessons to apply in the next. Methods include surveying community and student participants regarding the value they place on process and outcomes respectively in planning for a sustainable future. All project participants surveyed have placed high importance on the process of engagement, emphasising the value of developing relationships between all project partners. The quality of these relationships is central to planning for sustainable futures, and while the outcomes the students deliver are valued, it is as much for their catalytic role as for their contents. Design and planning projects through community engagement have been found to develop innovative responses to the challenges faced by coastal communities seeking direction toward sustainable futures. The enrichment of engagement relationships and processes has an important influence on the quality of these design and planning responses.
Resumo:
This paper reports on a doctoral study that explored the nature of pedagogic connectedness and revealed the ways in which teachers experience this phenomenon. Pedagogic connectedness is defined as the engagements between teacher and student that impact on student learning. In this study, twenty teachers in an independent college in South-East Queensland, Australia, were interviewed and the interview transcripts analysed iteratively. Five qualitatively different ways of experiencing pedagogic connectedness emerged from the data. The findings of this phenomenographic-related study are instructive in developing a framework for changes to teachers’ pedagogic practices.
Resumo:
“Hardware in the Loop” (HIL) testing is widely used in the automotive industry. The sophisticated electronic control units used for vehicle control are usually tested and evaluated using HIL-simulations. The HIL increases the degree of realistic testing of any system. Moreover, it helps in designing the structure and control of the system under test so that it works effectively in the situations that will be encountered in the system. Due to the size and the complexity of interaction within a power network, most research is based on pure simulation. To validate the performance of physical generator or protection system, most testing is constrained to very simple power network. This research, however, examines a method to test power system hardware within a complex virtual environment using the concept of the HIL. The HIL testing for electronic control units and power systems protection device can be easily performed at signal level. But performance of power systems equipments, such as distributed generation systems can not be evaluated at signal level using HIL testing. The HIL testing for power systems equipments is termed here as ‘Power Network in the Loop’ (PNIL). PNIL testing can only be performed at power level and requires a power amplifier that can amplify the simulation signal to the power level. A power network is divided in two parts. One part represents the Power Network Under Test (PNUT) and the other part represents the rest of the complex network. The complex network is simulated in real time simulator (RTS) while the PNUT is connected to the Voltage Source Converter (VSC) based power amplifier. Two way interaction between the simulator and amplifier is performed using analog to digital (A/D) and digital to analog (D/A) converters. The power amplifier amplifies the current or voltage signal of simulator to the power level and establishes the power level interaction between RTS and PNUT. In the first part of this thesis, design and control of a VSC based power amplifier that can amplify a broadband voltage signal is presented. A new Hybrid Discontinuous Control method is proposed for the amplifier. This amplifier can be used for several power systems applications. In the first part of the thesis, use of this amplifier in DSTATCOM and UPS applications are presented. In the later part of this thesis the solution of network in the loop testing with the help of this amplifier is reported. The experimental setup for PNIL testing is built in the laboratory of Queensland University of Technology and the feasibility of PNIL testing has been evaluated using the experimental studies. In the last section of this thesis a universal load with power regenerative capability is designed. This universal load is used to test the DG system using PNIL concepts. This thesis is composed of published/submitted papers that form the chapters in this dissertation. Each paper has been published or submitted during the period of candidature. Chapter 1 integrates all the papers to provide a coherent view of wide bandwidth switching amplifier and its used in different power systems applications specially for the solution of power systems testing using PNIL.
Resumo:
This chapter traces the development of the global digital storytelling movement from its origins in California to its adoption by the BBC in the UK and its subsequent dispersal around the world. It identifies the foundational practices, uneven development and diffusion, and emergent practices internationally.
Resumo:
Networks are having a profound impact on the way society is organised at the local, national and international level. Networks are not ‘business as usual’. The defining feature of networks and a key indicator for their success is the strength and quality of the interactions between members. This relational power of networks provides the mechanism to bring together previously dispersed and even competitive entities into a collective venture. Such an operating context demands the ability to work in a more horizontal, relational manner. In addition a social infrastructure must be formed that will support and encourage efforts to become more collaborative. This paper seeks to understand how network members come to know about working in networks, how they work on their relationships and create new meanings about the nature of their linked work. In doing so, it proposes that learning, language and leadership, herein defined as the ‘3Ls’ represent critical mediating aspects for networks.
Resumo:
This paper describes the operation of a microgrid that contains a custom power park (CPP). The park may contain an unbalanced and/or nonlinear load and the microgrid may contain many dis-tributed generators (DGs). One of the DGs in the microgrid is used as a compensator to achieve load compensation. A new method is proposed for current reference generation for load compensation, which takes into account the real and reactive power to be supplied by the DG connected to the compensator. The real and reactive power from the DGs and the utility source is tightly regulated assuming that dedicated communication channels are available. Therefore this scheme is most suitable in cases where the loads in CPP and DGs are physically located close to each other. The proposal is validated through extensive simulation studies using EMTDC/PSCAD software package (version 4.2).