969 resultados para Poor water exchange
Resumo:
Although Australia is the world’s driest continent without the complication of international borders and a generally good governance reputation, its record of water governance is very poor. This chapter considers some of the potentially general lessons that might be derived for water governance. These include: the difficulties of delineatingwater rights; the apparent preference for creating property rights in unsustainable uses of water while failing to deliver basic water rights; the inter twining of carbon and water crises; the dangers of privatising networks that form natural monopolies; the dangers of disciplinary hubris where interdisciplinary understanding is critical. It concludes by starting to address some of the water governance issues raised by globalisation.
Resumo:
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south-eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O-N ha−1 over the 2-year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2-year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4-C ha−1 day−1 during extended dry periods to less than 2–5 g CH4-C ha−1 day−1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4-C ha−1 yr−1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one-third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability
Resumo:
In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.
Resumo:
Layered doubly hydroxides (LDHs) also known as hydrotalcites or anionic clays are a group of clay minerals that have shown promise for the removal of toxic anions from water through both anion exchange and a process known as the reformation effect. This project has involved the preparation and characterisation of LDH materials as well as the investigation of their ability to remove selected anions from aqueous solutions by the reformation effect. The LDH materials were successfully prepared from magnesium, aluminium, zinc and chromium chloride salts using the co-precipitation method. Samples were characterised using powder X-ray diffraction (XRD) and thermogravimetry (TG) to confirm the presence of LDHs. Powder XRD revealed a characteristic LDH structure for all LDH samples. Thermal Analysis showed decomposition usual occurred through a three or four step process as expected for LDHs. Preliminary investigations of the removal of sulfate, nitrate and fluoride by an Mg/Al LDH were carried out, and the products were characterised using XRD and TG which showed that an LDH material similar to the original hydrotalcite was formed after reformation. A Zn/Al LDH was investigated as a potential sorbent material for the removal of iodine and iodide from water. It was found that the LDH was a suitable adsorbent which is able to remove almost all of the iodine present in the test solutions. Again, the products were characterised by XRD, TG and evolved gas mass spectrometry (EGMS) in an attempt to better understand the iodine removal process. Powder XRD showed successful reformation of the LDH structure and TG/EGMS showed that only a small amount of iodine species were lost during thermal decomposition. Finally, the mineral stichtite a Mg/Cr LDH was successfully synthesised and investigated using XRD, TG and EGMS. Unfortunately, due to lack of time it was not possible to identify any new uses for the mineral stichtite in the current project.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
Heteroatom doping on the edge of graphene may serve as an effective way to tune chemical activity of carbon-based electrodes with respect to charge carrier transfer in an aqueous environment. In a step towards developing mechanistic understanding of this phenomenon, we explore herein mechanisms of proton transfer from aqueous solution to pristine and doped graphene edges utilizing density functional theory. Atomic B-, N-, and O- doped edges as well as the native graphene are examined, displaying varying proton affinities and effective interaction ranges with the H3O+ charge carrier. Our study shows that the doped edges characterized by more dispersive orbitals, namely boron and nitrogen, demonstrate more energetically favourable charge carrier exchange compared with oxygen, which features more localized orbitals. Extended calculations are carried out to examine proton transfer from the hydronium ion in the presence of explicit water, with results indicating that the basic mechanistic features of the simpler model are unchanged.
Resumo:
Background WSUD implementation in the Gold Coast City Council area commenced more than a decade ago. As a result, Council is expected to be in possession of WSUD assets valued at over tens of million dollars. The Gold Coast City Council is responsible for the maintenance and long-term management of these WSUD assets. Any shortcoming in implementation of best WSUD practices can potentially result in substantial liabilities and ineffective expenditure for the Council in addition to reduced efficiencies and outcomes. This highlights the importance of periodic auditing of WSUD implementation. Project scope The overall study entailed the following tasks: * A state-of-the-art literature review of the conceptual hydraulic and water quality treatment principles, current state of knowledge in relation to industry standards, best practice and identification of knowledge gaps in relation to maintenance and management practices and potential barriers to the implementation of WSUD. * Council stakeholder interviews to understand current practical issues in relation to the implementation of WSUD and the process of WSUD application from development application approval to asset management. * Field auditing of selected WSUD systems for condition assessment and identification of possible strengths and weaknesses in implementation. * Review of the Land Development Guidelines in order to identify any gaps and to propose recommendations for improvement. Conclusions Given below is a consolidated summary of the findings of the study undertaken. State-of-the-art literature review Though the conceptual framework for WSUD implementation is well established, the underlying theoretical knowledge underpinning the treatment processes and maintenance regimes and life cycle costing are still not well understood. Essentially, these are the recurring themes in the literature, namely, the inadequate understanding of treatment processes and lack of guidance to ensure specificity of maintenance regimes and life cycle costing of WSUDs. The fundamental barriers to successful WSUD implementation are: * Lack of knowledge transfer – This essentially relates to the lack of appropriate dissemination of research outcomes and the common absence of protocols for knowledge transfer within the same organisation. * Cultural barriers – These relate to social and institutional factors, including institutional inertia and the lack of clear understanding of the benefits. * Fragmented responsibilities – This results from poor administrative integration within local councils in relation to WSUDs. * Technical barriers – These relate to lack of knowledge on operational and maintenance practices which is compounded by model limitations and the lack of long-term quantitative performance evaluation data. * Lack of engineering standards – Despite the availability of numerous guidelines which are non-enforceable and can sometimes be confusing, there is a need for stringent engineering standards. The knowledge gaps in relation to WSUDs are only closing very slowly. Some of the common knowledge gaps identified in recent publications have been recognised almost a decade ago. The key knowledge gaps identified in the published literature are: * lack of knowledge on operational and maintenance practices; * lack of reliable methodology for identifying life cycle issues including costs; * lack of technical knowledge on system performance; * lack of guidance on retrofitting in existing developments. Based on the review of barriers to WSUD implementation and current knowledge gaps, the following were identified as core areas for further investigation: * performance evaluation of WSUD devices to enhance model development and to assess their viability in the context of environmental, economic and social drivers; establishing realistic life cycle costs to strengthen maintenance and asset management practices; * development of guidelines specific to retrofitting in view of the unique challenges posed by existing urban precincts together with guidance to ensure site specificity; establishment of a process for knowledge translation for enhancing currently available best practice guidelines; * identification of drivers and overcoming of barriers in the areas of institutional fragmentation, knowledge gaps and awareness of WSUD practices. GCCC stakeholder interviews Fourteen staff members involved in WSUD systems management in the Gold Coast City Council, representing four Directorates were interviewed using a standard questionnaire. The primary issues identified by the stakeholders were: * standardisation of WSUD terminology; * clear protocols for safeguarding devices during the construction phase; * engagement of all council stakeholders in the WSUD process from the initial phase; * limitations in the Land Development Guidelines; * ensuring public safety through design; * system siting to avoid conflicts with environmental and public use of open space; * provision of adequate access for maintenance; * integration of social and ecosystem issues to ensure long-term viability of systems in relation to both, vandalism and visual recreation; * lack of performance monitoring and inadequacy of the maintenance budget; * lack of technical training for staff involved in WSUD design approvals and maintenance; incentives for developers for acting responsibly in stormwater management. Field auditing of WSUD systems A representative cross section of WSUD systems in the Gold Coast were audited in the field. The following strengths and weaknesses in WSUD implementation were noted: * The implementation of WSUD systems in the field is not consistent. * The concerns raised by the stakeholders during the interviews in relation to WSUD implementation was validated from the observations from the field auditing, particularly in relation to the following: * safeguarding of devices during the construction phase * public safety * accessibility for maintenance * lack of performance monitoring by Council to assess system performance * inadequate maintenance of existing systems to suit site specific requirements. * A treatment train approach is not being consistently adopted. * Most of the systems audited have satisfactorily catered for public safety. Accessibility for maintenance has been satisfactorily catered for in most of the systems that were audited. * Systems are being commissioned prior to construction activities being substantially completed. * The hydraulic design of most systems appears to be satisfactory. * The design intent of the systems is not always clear. Review of Land Development Guidelines The Land Development Guidelines (TDG) was extensively reviewed and the following primary issues were noted in relation to WSUD implementation: * the LDG appears to have been prepared primarily to provide guidance to developers. It is not clear to what extent the guidelines are applicable to Council staff involved in WSUD maintenance and management; * Section 13 is very voluminous and appears to be a compilation of a series of individual documents resulting in difficulties in locating specific information, a lack of integration and duplication of information; * the LDG has been developed with a primary focus on new urban precinct development and the retrofitting of systems in existing developments has not been specifically discussed; * WSUDs are discussed in two different sections in the LDG and it is not clear which section takes precedence as there are inconsistencies between the two sections; there is inconsistent terminology being used; * there is a need for consolidation of information provided in different sections in the LDG; * there are inconsistencies in the design criteria provided; * there is a need for regular updating of the LDG to ensure that the information provided encompasses the state-of-the-art; * there is limited guidance provided for the preparation of maintenance plans and life cycle costing to assist developers in asset handover and to assist Council staff in assessment. * Based on these observations, eleven recommendations have been provided which are discussed below. Additionally, the stakeholder provided the following specific comments during the interviews in relation to the LDG: * lack of flexibility to cover the different stages of the life cycle of the systems; * no differentiation in projects undertaken by developers and Council; * inadequate information with regards to safety issues such as maximum standing water depth, fencing and safety barriers and public access; * lack of detailed design criteria in relation to Crime Prevention through Environmental Design, safety, amenity, environment, surrounding uses and impacts on surroundings; * inadequate information regarding maintenance requirements specific to the assessment and compliance phases; * recommendations for plantings are based primarily on landscape requirements rather than pollutant uptake capability. Recommendations With regards to the Land Development Guidelines, the following specific recommendations are provided: 1. the relevant sections and their extent of applicability to Council should be clearly identified; 2. integration of the different subsections within Section 13 and re-formatting the document for easy reference; 3. the maintenance guidelines provided in Section 13 should be translated to a maintenance manual for guidance of Council staff; 4. should consider extending the Guidelines to specifically encompass retrofitting of WSUD systems to existing urban precincts; 5. Section 3 needs to be revised to be made consistent with Section 13, to ensure priority for WSUD practices in urban precincts and to move away from conventional stormwater drainage design such as kerb and channelling; 6. it would also be good to specify as to which Section takes predominance in relation to stormwater drainage. It is expected that Section 13 would take predominance over the other sections in the LDG; 7. terminology needs to be made consistent to avoid confusion among developers and Council staff. Water Sensitive Urban Design is the term commonly used in Australia for stormwater quality treatment, rather than Stormwater Quality Improvement Devices. This once again underlines the need for ensuring consistency between Section 3 and Section 13; 8. it would also be good if there is a glossary of commonly used terms in relation to WSUD for use by all stakeholders and which should also be reflected in the LDG; 9. consolidation of all WSUD information into one section should be considered together with appropriate indicators in other LDG Sections regarding the availability of WSUD information. Ensuring consistency in the information provided is implied; 10. Section 13 should be updated at regular intervals to ensure the incorporation of the latest in research outcomes and incorporating criteria and guidance based on the state-of-the-art knowledge. The updating could be undertaken, say, in five year cycles. This would help to overcome the current lack of knowledge transfer; 11. the Council should consider commissioning specialised studies to extend the current knowledge base in relation to WSUD maintenance and life cycle costing. Additionally, Recommendation 10 is also applicable in this instance. The following additional recommendations are made based on the state-of-the-art literature review, stakeholder interviews and field auditing of WSUD systems: 1. Performance monitoring of existing systems to assess improvements to water quality, identify modifications and enhancements to improve performance; 2. Appropriate and monitored maintenance during different phases of development of built assets over time is needed to investigate the most appropriate time/phase of development to commission the final WSUD asset. 3. Undertake focussed investigations in the areas of WSUD maintenance and asset management in order to establish more realistic life cycle costs of systems and maintenance schedules; 4. the engagement of all relevant Council stakeholders from the initial stage of concept planning through to asset handover, and ongoing monitoring. This close engagement of internal stakeholders will assist in building a greater understanding of responsibilities and contribute to overcoming constraints imposed by fragmented responsibilities; 5. the undertaking of a public education program to inform the community of the benefits and ecosystem functions of WSUD systems; 6. technical training to impart state-of-the-art knowledge to staff involved in the approval of designs and maintenance and management of WSUD projects; 7. during the construction phase, it is important to ensure that appropriate measures to safeguard WSUD devices are implemented; 8. risks associated with potential public access to open water zones should be minimised with the application of appropriate safety measures; 9. system siting should ensure that potential conflicts are avoided with respect to public and ecosystem needs; 10. integration of social and ecosystem issues to ensure long-term viability of systems; provide incentives to developers who are proactive and responsible in the area of stormwater management.
Resumo:
The purpose of this study is to determine visual performance in water, including the influence of pupil size. The water en-vironment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition in order to to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture dete-riorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree with esti-mates for water of 0.39, 0.70 and 1.13 cycles/degree. In conclusion, vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Purpose: To determine visual performance in water, including the influence of pupil size. Method: The water environment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). Results: For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture deteriorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree and with estimates for water of 0.39, 0.70 and 1.13 cycles/degree. Conclusion: Vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Despite a wide acceptance that primary producers in Australia subscribe to a stewardship ethic, land and water degradation remains an ongoing problem. Recent calculations suggest that the economic cost of Australia's environmental degradation is amounting to more than $A3.5 billion a year with an estimated cost of managing (not overcoming) problems of salinity, acidification, soil erosion totalling $A60 billion over the next decade. This paper argues that stewardship itself is an unsatisfactory concept when looking to landholders to respond to environmental problems, for rarely does the attitude of stewardship translate into behaviours of improving natural resource management practices on private land. Whilst there is some acceptance of the environmental problem among primary producers, a number of external constraints may also impede the uptake of conservation-orientated practices. In light of the prevailing accounts of poor adoption of sustainable practices a number of policy options are reviewed in this paper, including formal regional partnerships, regulatory frameworks and market-based measures. It is concluded that the contentious nature of some of these new opportunities for change will mean that any moves aimed at reversing environmental degradation in Australia will be slow.
Resumo:
Most urban dwelling Australians take secure and safe water supplies for granted. That is, they have an adequate quantity of water at a quality that can be used by people without harm from human and animal wastes, salinity and hardness or pollutants from agriculture and manufacturing industries. Australia wide urban and peri-urban dwellers use safe water for all domestic as well as industrial purposes. However, this is not the situation remote regions in Australia where availability and poor quality water can be a development constraint. Nor is it the case in Sri Lanka where people in rural regions are struggling to obtain a secure supply of water, irrespective of it being safe because of the impact of faecal and other contaminants. The purposes of this paper are to overview: the population and environmental health challenges arising from the lack of safe water in rural and remote communities; response pathways to address water quality issues; and the status of and need for integrated catchment management (ICM) in selected remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. Conclusions are drawn that focus on the opportunity for inter-regional collaborations between Australia and Sri Lanka for the delivery of safe water through ICM.
Resumo:
A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.
Resumo:
Poor mine water management can lead to corporate, environmental and social risks. These risks become more pronounced as mining operations move into areas of water scarcity and/or increase climatic variability while also managing increased demand, lower ore grades and increased strip ratios. Therefore, it is vital that mine sites better understand these risks in order to implement management practices to address them. Systems models provide an effective approach to understand complex networks, particularly across multiple scales. Previous work has represented mine water interactions using systems model on a mine site scale. Here, we expand on that work by present an integrated tool that uses a systems modeling approach to represent mine water interactions on a site and regional scale and then analyses the risks associated with events stemming from those interactions. A case study is presented to represent three indicative corporate, environmental and social risks associated with a mine site that exists in a water scarce region. The tool is generic and flexible, and can be used in many scenarios to provide significant potential utility to the mining industry.