849 resultados para Platform of contact


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transitions between the different contact models which include the Hertz, Bradley, Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis-Dugdale (MD) models are revealed by analyzing their contact pressure profiles and surface interactions. Inside the contact area, surface interaction/adhesion induces tensile contact pressure around the contact edge. Outside the contact area, whether or not to consider the surface interaction has a significant influence on the contact system equilibrium. The difference in contact pressure due to the surface interaction inside the contact area and the equilibrium influenced by the surface interaction outside the contact area are physically responsible for the different results of the different models. A systematic study on the transitions between different models is shown by analyzing the contact pressure profiles and the surface interactions both inside and outside the contact area. The definitions of contact radius and the flatness of contact surfaces are also discussed. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the qualitative macroscopic response. Finally, we examine the effect of adhesion on the frictional response as well as develop a force threshold model for adhesion and mode I interfacial cracks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.

This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.

A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.

This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical mathematical model for friction between a fabric strip and the volar forearm has been developed and validated experimentally. The model generalizes the common assumption of a cylindrical arm to any convex prism, and makes predictions for pressure and tension based on Amontons' law. This includes a relationship between the coefficient of static friction (mu) and forces on either end of a fabric strip in contact with part of the surface of the arm and perpendicular to its axis. Coefficients of friction were determined from experiments between arm phantoms of circular and elliptical cross-section (made from Plaster of Paris covered in Neoprene) and a nonwoven fabric. As predicted by the model, all values of mu calculated from experimental results agreed within +/- 8 per cent, and showed very little systematic variation with the deadweight, geometry, or arc of contact used. With an appropriate choice of coordinates the relationship predicted by this model for forces on either end of a fabric strip reduces to the prediction from the common model for circular arms. This helps to explain the surprisingly accurate values of mu obtained by applying the cylindrical model to experimental data on real arms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study was conducted to investigate the efficacy of chlorine and UV irradiation in disinfecting aquarium effluent. A non-agglutinating, a virulent strain of Aeromonas salmonicida (NCIMB 11 02) was used as the test organism. Effluents from a fish tank were inoculated with a suspension of test organisms and subsequently treated with different concentrations of hypochlorite and UV irradiation separately and simultaneously. When used alone, 1.0 ppm hypochlorite reduced the viable cell count from 6.5 log to 3.0 log within 20 minutes of contact period. On the other hand, when used in combination with UV irradiation only 0.5 ppm hypochlorite exerted the same bactericidal effect within the same contact period as was observed with 1.0 ppm hypochlorite alone. This result indicated that required dose of disinfectant for the disinfection of aquarium effluents can be considerably reduced when it is used in combination with UV irradiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Micro-electro-mechanical systems, MEMS, is a rapidly growing interdisciplinary technology within the general field of Micro-Systems Technology which deals with the design and manufacture of miniaturised machines with major dimensions at the scale of tens, to perhaps hundreds, of microns. Because they depend on the cube of a representative dimension, component masses and inertias rapidly become small as size decreases whereas surface and tribological effects, which often depend on area, become increasingly important. Although MEMS components and their areas of contact are small, tribological conditions, measured by contact pressures or acceptable wear rates, are demanding and technical and commercial success will require careful measurement and precise control of surface topography and properties. Fabrication of small numbers of MEMS devices designed to test potential material combinations can be prohibitively expensive and thus there is a need for small scale test facilities which mimic the contact conditions within a micro-machine without themselves requiring processing within a full semiconductor foundry. The talk will illustrate some initial experimental results from a small-scale experimental device which meets these requirements, examining in particular the performance of Diamond-Like-Carbon coatings on a silicon substrate. Copyright © 2005 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ice storage characteristics of fresh and brined fillets from fresh shark (Carcharias melanopterus) were studied in and out of contact with ice for more than two weeks. Changes occurring in biochemical constituents, physical qualities and bacterial counts of the fillets are reported. Shelf life of brined fillets out of contact with ice was considerably longer than that of control samples tinder similar conditions. Icing of shark fillets is suggested as a method for the removal of urea on a commercial scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quality deterioration of seer held directly in contact with ice, in different forms, fillets and chunks, and of chunks held in ice but without direct contact, was studied for a period of 15 days. While the chunks held out of contact with ice were acceptable up to 13 days based on organoleptic evaluations, the chunks and fillets held in direct contact with ice were acceptable only up to 10 days. The order of preference of the samples at any interval of ice storage was chunks held out of contact with ice>chunks held directly in ice>fillets held directly in ice. The changes in the chemical quality of these samples were also in the same order, the deterioration being maximum in fillets and least in chunks kept out of contact with ice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ice-storage study of blood clam (Anadara granosa) meat in direct contact and out of contact (in 200 gauge polyethylene bag) with ice was taken up to assess the amenability of the meat to icing. Changes in moisture, total protein, non-protein nitrogen, α amino nitrogen, total volatile base nitrogen, glycogen, free fatty acid, peroxide value, total bacterial count and coliform count were followed every day. The raw and cooked meat were also subjected to organoleptic evaluation. The study showed that the clam meat can be ice-stored in very good condition out of contact with ice in polyethylene packets for 4 days and in direct contact with ice for 2 days.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment of quality of fish and shrimps landed at the fish harbour, Cochin, was made over the period January, 1980 to December, 1982. A total of 201 samples were analysed. Nearly 75% of the samples scored between 6-10 in a 10 point hedonic scale and the percentage unacceptability based on sensory assessment was 5. 5%. In 10.1% of the samples, total volatile nitrogen was >30 mg% and in 8.3% of the samples trimethylamine- nitrogen was >10 mg%. Both, the gr Torrymeter and Intellectron Fish Tester VI readings marked significant correlation with sensory scores and chemical indices; but failed to bear any significant correlation with bacterial counts. Of the 5-1 total samples 66.7% had total plate count (TPC) ≥10 super(5) g super(-1) and 8.5% were considered unacceptable based on TPC >5x10 super(5) g super(-1); 63.2% of the samples were free from Escherichia coli; 26.4% had >20 E. coli g super(-1) and 20.4% of the samples contained faecal streptococci >10 super(3) g super(-1). Seven percent of the samples showed coagulase positive staphylococci >100 g super(-1). Salmonella could not be detected in any of the samples examined. Crushed ice samples and the platform of the harbour had high bacterial loads.