961 resultados para Plasma fluoride
Resumo:
E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120(ctn) to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu(586)-Leu(587), termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120(ctn) was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120(ctn) in polarized cells is contextual and confined to the basolateral membrane.
Resumo:
Changes in plasma zinc concentration and markers of immune function were examined in a group of 10 male runners (n = 10) following a moderate increase in training over four weeks. Seven sedentary males acted as controls. Fasting blood samples were taken at rest, before (T0) and after T4) four weeks of increased (+ 16 %) training and after two weeks of reduced (- 31 %) training (W. Blood was analysed for plasma zinc concentration, differential leucocyte counts, lymphocyte subpopulations and lymphocyte proliferation using incorporation of H-3-thymidine. The runners increased their training volume by 16 % over the four weeks. When compared with the nonathletes, the runners had lower concentrations of plasma zinc (p = 0.012), CD3(+) (p = 0.042) and CD19(+) lymphocytes (p = 0.010) over the four weeks. Lymphocyte proliferation in response to Concanavalin A stimulation was greater in the runners (p = 0.0090). Plasma zinc concentration and immune markers remained constant during the study. Plasma zinc concentration correlated with total leucocyte counts in the athletes at T6 (r = -0.72, p < 0.05) and with Pokeweed mitogen stimulation in the nonathletes at T6 (r = -0.92, p < 0.05). Therefore, athletes are unlikely to benefit from zinc supplementation during periods of moderately increased training volume.
Resumo:
Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
It is shown that electrospun poly(vynilidene fluoride) nanofibers are fully poled right after preparation and show b-phase contents of 70%, therefore being able to be implemented into electroactive devices without further processing steps. Further,the local piezoelectric properties of individual electrospun fibers have been studied by piezoresponse force microscopy. Piezoelectric response, polarization switching, and nanoscale patterning of the fibers have been demonstrated.
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of 272 nm and a degree of porosity of 87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.
Resumo:
Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distributions between the previous fiber size values. Hydrophobicity of the membranes increases from ~115º water contact angle to ~128º with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137º. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications.
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
O objectivo do presente trabalho foi desenvolver, implementar e validar métodos de determinação de teor de cálcio (Ca), magnésio (Mg), sódio (Na), potássio (K) e fósforo (P) em biodiesel, por ICP-OES. Este método permitiu efectuar o controlo de qualidade do biodiesel, com a vantagem de proporcionar uma análise multi-elementar, reflectindo-se numa diminuição do tempo de análise. Uma vez que o biodiesel é uma das principais fontes de energia renovável e alternativa ao diesel convencional, este tipo de análises revela-se extremamente útil para a sua caracterização. De acordo com a análise quantitativa e qualitativa e após a validação dos respectivos ensaios, apresentam-se, na Tabela 1 as condições optimizadas para cada elemento em estudo. As condições de trabalho do ICP-OES foram escolhidas tendo em conta as características do elemento em estudo, o tipo de equipamento utilizado para a sua análise, e de modo a obter a melhor razão sinal/intensidade de fundo. Para a validação dos ensaios foram efectuados ensaios de recuperação, determinados limites de detecção e quantificação, ensaios de repetibilidade e reprodutibilidade, e verificação das curvas de calibração. Na tabela 2 apresentam-se os comprimentos de onda escolhidos (livres de interferências) e respectivos limites de detecção e quantificação dos elementos analisados por ICP-OES, na posição radial e radial atenuado.
Resumo:
OBJECTIVE: To evaluate fluoride and aluminum concentration in herbal, black, ready-to-drink, and imported teas available in Brazil considering the risks fluoride and aluminum pose to oral and general health, respectively. METHODS: One-hundred and seventy-seven samples of herbal and black tea, 11 types of imported tea and 21 samples of ready-to-drink tea were divided into four groups: I-herbal tea; II-Brazilian black tea (Camellia sinensis); III-imported tea (Camellia sinensis); IV-ready-to-drink tea-based beverages. Fluoride and aluminum were analyzed using ion-selective electrode and atomic absorption, respectively. RESULTS: Fluoride and aluminum levels in herbal teas were very low, but high amounts were found in black and ready-to-drink teas. Aluminum found in all samples analyzed can be considered safe to general health. However, considering 0.07 mg F/kg/day as the upper limit of fluoride intake with regard to undesirable dental fluorosis, some teas exceed the daily intake limit for children. CONCLUSIONS: Brazilian and imported teas made from Camellia sinensis as well as some tea-based beverages are sources of significant amounts of fluoride, and their intake may increase the risk of developing dental fluorosis.
Resumo:
This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Nos dias de hoje existe uma grande preocupação da população em fazer uma alimentação mais saudável, uma alimentação que tenha nos seus alimentos elementos que não prejudiquem a saúde mas sim que a tornem mais forte. Um desses elementos que pode trazer benefício para a saúde é o Germânio, elemento de estudo no presente trabalho. Neste trabalho determinou-se a concentração de Germânio em alguns alimentos. Os alimentos usados foram: espargos, ginseng, cogumelos, rabanete, gengibre, aloé vera e alho. Para se fazer a decomposição das amostras foi usada uma solução de ácido nítrico concentrado (67%) e peróxido de hidrogénio (30%), de seguida as soluções resultantes foram analisadas por espectrometria de massa ligado a um plasma acoplado indutivamente (Inductive Coupled Plasma - Mass Spectrometry (ICP-MS)). Esta técnica permitiu estudar os três isótopos mais abundantes de germânio (Ge70, Ge72 e Ge74). Como principais resultados deste trabalho pode-se referir que o alimento que apresenta uma maior concentração de Germânio é o ginseng (243,0 ng/g), seguindo-se o alho (152,6 ng/g). Com concentrações bastante próximas ficaram os espargos, gengibre e cogumelos com um valor aproximado de 75 ng/g. As concentrações mais baixas formam encontradas no aloé vera e rabanete, com valores de 38,16 e 21,85ng/g respectivamente. Com estes resultados podemos concluir que para ter uma alimentação rica neste elemento deve-se ingerir ginseng e alho pois dos alimentos estudados são os mais ricos em Germânio.
Resumo:
Este trabalho visa a obtenção e o estudo das características dos revestimentos de AlN e TiN em substratos metálicos, produzidos por pulverização catódica em plasma magnetrão, num equipamento com cátodo oco, desenvolvido no LEF do CEFITEC. Este equipamento foi adaptado para o presente trabalho, através de alguns elementos adicionais, designadamente de um porta-amostras que permitiu o revestimento de provetes em lotes. Deste estudo conclui-se que a aplicação de uma tensão de “bias” na amostra altera a morfologia dos revestimentos e as características dos materiais que constituem o filme, não só no que diz respeito à sua composição, como também proporciona estruturas mais densas e com menos porosidade. As tensões de “bias” típicas foram de –100 V no caso de AlN e de –75 V e com uma potência de 2,0 kW no cátodo no caso de TiN. Neste último foi considerado apenas o objectivo da obtenção da fase d, de estrutura CFC (cor dourada), por ser a única de interesse industrial. Por difracção de raios x verificou-se a obtenção de TiN e TiN0,9 com as características pretendidas. Também se verificou que as tensões residuais dos filmes são de compressão e isotrópicas.
Resumo:
An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.