243 resultados para Phytochemistry
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction The phytochemistry of species of the genus Piper has been studied extensively, including Piper solmsianum. However, no studies have addressed the phytochemistry of the sap content of Piper species. Objective To evaluate the transferring of secondary compounds from the saps of P. solmsianum to the honeydew of Edessa meditabunda. Methodology The honeydew of E. meditabunda and saps of P. solmsianum were analysed by GC-MS, H-1-NMR and LC-MS. Results The lignan (-)-grandisin and the phenylpropanoid (E)-isoelemicin were detected in both saps of P. solmsianum and honeydew of E. meditabunda. Conclusion Analysis of honeydew secreted by the sap-sucking insect E. meditabunda indicated that (-)-grandisin and (E)-isoelemicin are absorbed from the phloem of Piper solmsianum. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
The dichloromethane extract from taproots of Hortia oreadica afforded six limonoids, these are 9,11-dehydro-12 alpha-acetoxyhortiolide A, hortiolide C, 11 alpha-acetoxy-15-deoxy-6-hydroxyhortiolide C, hortiolide D, hortiolide E, 12 beta-hydroxyhortiolide E, in addition to the known limonoid, guyanin. The dichloromethane extract from stems of H. oreadica also afforded two limonoids 9,11-dehydro12 alpha-hydroxyhortiolide A and 6-hydroxyhortiolide C. As a result of this study and literature data, Hortia has been shown to produce highly specialized limonoids that are similar to those from the Flindersia (Flindersioideae). The taxonomy of Hortia has been debatable, with most authors placing it in the Toddalioideae. Considering the complexity of the isolated limonoids, Hortia does not show any close affinity to the genera of Toddalioideae. That is, the limonoids appear to be of little value in resolving the taxonomic situation of Hortia. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Two new guignardones and one tricycloalternarene derivatives, named guignardone D, E (2-3) and tricycloalternarene F (4), and the known guignardone A (1) were isolated from Guignardia mangiferae, an endophytic fungus from the leaves of Viguiera arenaria (Asteraceae), after fermentation in Czapek medium. Structures were established on the basis of their spectroscopic data, including H-1 NMR, C-13 NMR, HMQC, HMBC and HRESI-MS. (C) 2012 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.
Resumo:
A phytochemical study of the ethyl acetate extract of the roots and adventitious roots of Spirotropis longifolia, a monodominant tree species of the Guianan rainforest, has allowed the isolation of three compounds: 2- hydroxy-8,9-methylenedioxy-2',2'-dimethylpyrano-[5',6':4,3]-6a-prenyl-[6aS,11aS]-pterocarpan (spirotropin A), 2-hydroxy-8,9-methylenedioxy-2',2'-dimethy1-3',4'-dihydropyrano-[5',6':4,3]-6a-prenyl-(6aS,11aS]-pterocarpan (spirotropin B), and 5,7-dihydroxy-6.8-dipreny1-2 ''''.2 ''''-dimethylpyrano[5 '''',6 '''': 3',4]-isoflavone (spirotropone). In addition, 10 known compounds, trans-oxyresveratrol, trans-resveratrol, piceatannol, daidzein, genistein, isoprunetin, lupeol, latifolol, gnetin D and gnetin E, were also isolated. These compounds were evaluated for their antifungal activity and their cytotoxicity, and their structures were established by 1D and 2D NMR, HRMS, CD and optical rotation measurements. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.
Resumo:
The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant’s highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g−1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.
Resumo:
In order to defend themselves against arthropod herbivores, maize plants produce 1,4-benzoxazin-3-ones (BXs), which are stored as weakly active glucosides in the vacuole. Upon tissue disruption, BXs come into contact with β-glucosidases, resulting in the release of active aglycones and their breakdown products. While some aglycones can be reglucosylated by specialist herbivores, little is known about how they detoxify BX breakdown products. Here we report on the structure of an N-glucoside, 3-β-d-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc), purified from Spodoptera frugiperda faeces. In vitro assays showed that MBOA-N-Glc is formed enzymatically in the insect gut using the BX breakdown product 6-methoxy-2-benzoxazolinone (MBOA) as precursor. While Spodoptera littoralis and S. frugiperda caterpillars readily glucosylated MBOA, larvae of the European corn borer Ostrinia nubilalis were hardly able to process the molecule. Accordingly, Spodoptera caterpillar growth was unaffected by the presence of MBOA, while O. nubilalis growth was reduced. We conclude that glucosylation of MBOA is an important detoxification mechanism that helps insects tolerate maize BXs.
Resumo:
igments, proteins and enzyme activity related to chlorophyll catabolism were analysed in senescing leaves of wild-type (WT) Lolium temulentum and compared with those of an introgression line carrying a mutant gene from stay-green (SG) Festuca pratensis. During senescence of WT leaves chlorophylls a and b were continuously catabolised to colourless products and no other derivatives were observed, whereas in SG leaves there was an accumulation of dephytylated and oxidised catabolites including chlorophyllide a, phaeophorbide a and 132 OH-chlorophyllide a. Dephytylated products were absent from SG leaf tissue senescing under a light-dark cycle. Retention of pigments in SG was accompanied by significant stabilisation of light harvesting chlorophyll-proteins compared with WT, but soluble proteins such as Rubisco were degraded during senescence at a similar rate in the two genotypes. The activity of phaeophorbide a oxygenase measured in SG tissue at 3d was less than 12% of that in WT tissue at the same time-point during senescence and of the same order as that in young pre-senescent WT leaves, indicating that the metabolic lesion in SG concerns a deficiency at the ring-opening step of the catabolic pathway. In senescent L. temulentum tissue two terminal chlorophyll catabolites were identified with chromatographic characteristics that suggest they may represent hitherto undescribed catabolite structures. These data are discussed in relation to current understanding of the genetic and metabolic control of chlorophyll catabolism in leaf senescence.
Resumo:
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAMI1 was expressed from its cDNA in enzymatically active form and exhibits substrate specificity for indole-3-acetamide, but also some activity against l-asparagine. The recombinant enzyme was characterized further. The results show that higher plants have acylamidohydrolases with properties similar to the enzymes of certain plant-associated bacteria such as Agrobacterium-, Pseudomonas- and Rhodococcus-species, in which these enzymes serve to synthesize the plant growth hormone, indole-3-acetic acid, utilized by the bacteria to colonize their host plants. As indole-3-acetamide is a native metabolite in Arabidopsis thaliana, it can no longer be ruled out that one pathway for the biosynthesis of indole-3-acetic acid involves indole-3-acetamide-hydrolysis by AtAMI1.
Resumo:
In an attempt to reveal the relationships between alkaloid biosynthesis and phylogeny, we investigated by GC–MS the alkaloid patterns of 22 species and 3 hybrids (from 45 locations) from seven main sections of the genus Narcissus (Amaryllidaceae). The results indicate that the first alkaloids to evolve in the genus Narcissus were of the lycorine- and homolycorine-type. The alkaloid pattern of the Nevadensis section supports its recent separation from the Pseudonarcissus section. The plants of Narcissus pallidulus (Ganymedes section) show a predominance of Sceletium-type compounds, which are quite rare in the Amaryllidaceae family. Two successful evolutionary strategies involving alkaloid biosynthesis and leading to an expansion in taxa and occupied area were determined. Firstly, a diversification of alkaloid patterns and a high alkaloid concentration in the organs of the large Narcissus species (in the Pseudonarcissus section) resulted in an improved chemical defence in diverse habitats. Secondly, both plant size and alkaloid biosynthesis were reduced (in the Bulbocodium and Apodanthi sections) relegated to dry pastures and rocky places.
Resumo:
Purpose: To investigate the phytochemistry and cytotoxic activity of stem bark extracts from Genus dolichocarpa and Duguetia chrysocarpa - two species of the Annonaceae family. Methods: The crude ethanol bark extracts (EtOH) of the plants were obtained by maceration. The crude extracts were suspended in a mixture of methanol (MeOH) and water (H2O) (proportion 3:7 v/v) and partitioned with hexane, chloroform (CHCl3) and ethyl acetate (AcOEt) in ascending order of polarity to obtain the respective fractions. The extracts were evaluated on thin layer chromatography (TLC) plates of silica gel to highlight the main groups of secondary metabolites. Cytotoxicity was tested against human tumor cell lines - OVCAR-8 (ovarian), SF-295 (brain) and HCT-116 (colon) - using 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results: The screening results demonstrated that all the extracts were positive for the presence of flavonoids and tannins. The presence of alkaloids also was detected in some extracts. The hexane extract of A. dolichocarpa showed the strongest cytotoxicity against HCT-116 with cell growth inhibition of 89.02 %. Conclusion: The findings demonstrate for the first time the cytotoxic activity of the extracts of A. dolichocarpa and D. chrysocarpa, thus providing some evidence that plants of the Annonaceae family are a source of active secondary metabolites with cytotoxic activity.