982 resultados para Participatory science
Resumo:
There is significant interest in Human-computer interaction methods that assist in the design of applications for use by children. Many of these approaches draw upon standard HCI methods,such as personas, scenarios, and probes. However, often these techniques require communication and kinds of thinking skills that are designer centred,which prevents children with Autism Spectrum Disorders or other learning and communication disabilities from being able to participate. This study investigates methods that might be used with children with ASD or other learning and communication disabilities to inspire the design of technology based intervention approaches to support their speech and language development. Similar to Iversen and Brodersen, we argue that children with ASD should not be treated as being in some way “cognitively incomplete”. Rather they are experts in their everyday lives and we cannot design future IT without involving them. However, how do we involve them Instead of beginning with HCI methods, we draw upon easy to use technologies and methods used in the therapy professions for child engagement, particularly utilizing the approaches of Hanen (2011) and Greenspan (1998). These approaches emphasize following the child’s lead and ensuring that the child always has a legitimate turn at a detailed level of interaction. In a pilot project, we have studied a child’s interactions with their parents about activities over which they have control – photos that they have taken at school on an iPad. The iPad was simple enough for this child with ASD to use and they enjoyed taking and reviewing photos. We use this small case study as an example of a child-led approach for a child with ASD. We examine interactions from this study in order to assess the possibilities and limitations of the child-led approach for supporting the design of technology based interventions to support speech and language development.
Resumo:
This paper presents a participatory project involving the traditional glass bead craft industries in rural Java, Indonesia. Their survival is in danger due to tight business competition among themselves and due to shortcomings in existing business mechanisms. The research explores a departure from traditional government assistance programs which seek to train craftspeople with new kinds of technology based skills. Instead, the project explores alternate business mechanisms, ways for traditional craftspeople to get more power in business mechanisms, and ways to develop new design strategies through a collaborative approach. The ultimate goal is to ensure sustainable livelihoods for traditional craft producers and for the traditional craft industry in general. This research also aims to support the economic strength and competitiveness of these industries indirectly by i. Generating knowledge about developing innovation strategies in the traditional craft industry; ii. Providing an alternative advisory program to support the sustainability of the traditional souvenir craft industry; iii. Providing inputs for designers or any institutions who intend to establish collaborative design learning with craft industries. Understanding the situation carefully,including sensitivities such as culture and tensions among people, building self-confidence and trust among craftspeople as well as involving junior designers are keys in pursuing a participatory project in this case.
Resumo:
In many “user centred design” methods, participants are used as informants to provide data but they are not involved in further analysis of that data. This paper investigates a participatory analysis approach in order to identify the strengths and weaknesses of involving participants collaboratively in the requirements analysis process. Findings show that participants are able to use information that they themselves have provided to analyse requirements and to draw upon that analysis for design, producing insights and suggestions that might not have been available otherwise to the design team. The contribution of this paper is to demonstrate an example of a participatory analysis process.
Resumo:
For people with intellectual disabilities there are significant barriers to inclusion in socially cooperative endeavours. This paper investigates the effectiveness of Stomp, a tangible user interface (TUI) designed to provide new participatory experiences for people with intellectual disability. Results from an observational study reveal the extent to which the Stomp system supports social and physical interaction. The tangible, spatial and embodied qualities of Stomp result in an experience that does not rely on the acquisition of specific competencies before interaction and engagement can occur.
Resumo:
Bystander is a multi-user, immersive, interactive environment intended for public display in a museum or art gallery. It is designed to make available heritage collections in novel and culturally responsible ways. We use its development as a case study to examine the role played in that process by a range of tools and techniques from participatory design traditions. We describe how different tools were used within the design process, specifically: the ways in which the potential audience members were both included and represented; the prototypes that have been constructed as a way of envisioning how the final work might be experienced; and how these tools have been brought together in ongoing designing and evaluation. We close the paper with some reflections on the extension of participatory commitments into still-emerging areas of technology design that prioritise the design of spaces for human experience and reflective interaction.
Resumo:
In this paper I consider a role for risk understanding in school science education. Grounds for this are described in terms of current sociological analyses of the contemporary world as a ‘risk society’ and recent public understanding of science studies where science and risk are concerns commonly linked within the wider community. These concerns connect with support amongst many science educators for the goal of science education for citizenship. From this perspective scientific literacy for decision making on contemporary socioscientific issues is central. I argue that in such decision making risk understanding has an important role to play. I examine some of the challenges its inclusion in school science presents to science teachers, review previous writing about risk in the science education literature and consider how knowledge about risk might be addressed in school science. I also outline the varying conceptions of risk and suggest some future research directions which would support the inclusion of risk in classroom discussions of socioscientific issues.
Resumo:
This paper reports one aspect of a study of 28 young adults (18–26 years) engaging with the uncertain (contested) science of a television news report about recent research into mobile phone health risks. The aim of the study was to examine these young people’s ‘accounts of scientific knowledge’ in this context. Seven groups of friends responded to the news report, initially in focus group discussions. Later in semi-structured interviews they elaborated their understanding of the nature of science through their explanations of the scientists’ disagreement and described their mobile phone safety risk assessments. This paper presents their accounts in terms of their views of the nature of science and their concept understanding. Discussions were audio-recorded then analysed by coding the talk in terms of issues raised, which were grouped into themes and interpreted in terms of a moderate social constructionist theoretical framing. In this context, most participants expressed a ‘common sense’ view of the nature of science, describing it as an atheoretical, technical procedure of scientists testing their personal opinions on the issue, subject to the influence of funding sponsors. The roles of theory and data interpretation were largely ignored. It is argued that the nature of science understanding is crucial to engagement with contemporary socioscientific issues, particularly the roles of argumentation, theory, data interpretation, and the distinction of science from common sense. Implications for school science relate primarily to nature of science teaching and the inclusion of socioscientific issues in school science curricula. Future research directions are considered.
Resumo:
Most of creativity in the digital world passes unnoticed by the industry practices and policies, and it isn't taken into account in the cultural and economic strategies of the creative industries. We should find ways to catalyze this creative production, showing how the user's contribution may contribute to social learning, cultural and economic advancement. To that effect, we must know what is an open creative system and how it works. Based on this diagnosis, the author that interdisciplinarity is urgent and there is also a need for a science of culture. What is at stake is a strategy of integrated development, as regards the upcoming innovation in its complex, productive and learning aspects.
Resumo:
Purpose: Investigations of foveal aberrations assume circular pupils. However, the pupil becomes increasingly elliptical with increase in visual field eccentricity. We address this and other issues concerning peripheral aberration specification. Methods: One approach uses an elliptical pupil similar to the actual pupil shape, stretched along its minor axis to become a circle so that Zernike circular aberration polynomials may be used. Another approach uses a circular pupil whose diameter matches either the larger or smaller dimension of the elliptical pupil. Pictorial presentation of aberrations, influence of wavelength on aberrations, sign differences between aberrations for fellow eyes, and referencing position to either the visual field or the retina are considered. Results: Examples show differences between the two approaches. Each has its advantages and disadvantages, but there are ways to compensate for most disadvantages. Two representations of data are pupil aberration maps at each position in the visual field and maps showing the variation in individual aberration coefficients across the field. Conclusions: Based on simplicity of use, adequacy of approximation, possible departures of off-axis pupils from ellipticity, and ease of understanding by clinicians, the circular pupil approach is preferable to the stretched elliptical approach for studies involving field angles up to 30 deg.
Resumo:
The quest for the achievement of informed nature of science (NOS) views for all learners continues to inspire science educators to seek out effective instructional interventions to aid in the development of learners’ NOS views. Despite the extensive amount of research conducted in the field, the development of informed NOS views has been difficult to achieve, with many studies reporting difficulties in changing learners’ NOS views. Can engaging learners in argumentation lead to improvements in their NOS views? This review answers this question by examining studies which have explored NOS and argumentation in science education. The review also outlines a rationale for incorporating argumentation in science education, together with a brief overview of important recent studies in the field. Implications drawn from this review suggest that the incorporation of explicit NOS and argumentation instruction, together with consideration of various contextual, task-specific and personal factors which could mediate learners’ NOS views and engagement in argumentation, could lead to improvements in learners’ views of NOS.
Resumo:
Curriculum developers and researchers have promoted context based programmes to arrest waning student interest and participation in the enabling sciences at high school and university. Context-based programmes aim for connections between scientific discourse and real-world contexts to elevate curricular relevance without diminishing conceptual understanding. Literature relating to context-based approaches to learning will be reviewed in this chapter. In particular, international trends in curricular development and results from evaluations of major projects (e.g. PLON, Salters Advanced Chemistry, ChemCom) will be highlighted. Research projects that explore context-based interventions focusing on such outcomes as student interest, perceived relevance and conceptual understanding also will feature in the review. The chapter culminates with a discussion of current context-based research that interprets classroom actions from a dialectical socio-cultural framework, and identifies possible new directions for research.
Resumo:
Individual science teachers who have inspired colleagues to transform their classroom praxis have been labelled transformational leaders. As the notion of distributed leadership became more accepted in the educational literature, the focus on the individual teacher-leader shifted to the study of leadership praxis both by individuals (whoever they might be) and by collectives within schools and science classrooms. This review traces the trajectory of leadership research, in the context of learning and teaching science, from an individual focus to a dialectical relationship between individual and collective praxis. The implications of applying an individual-collective perspective to praxis for teachers, students and their designated leaders are discussed.
Resumo:
Increasingly societies and their governments are facing important social issues that have science and technology as key features. A number of these socio-scientific issues have two features that distinguish them from the restricted contexts in which school science has traditionally been presented. Some of their science is uncertain and scientific knowledge is not the only knowledge involved. As a result, the concepts of uncertainty, risk and complexity become essential aspects of the science underlying these issues. In this chapter we discuss the nature and role of these concepts in the public understanding of science and consider their links with school science. We argue that these same concepts and their role in contemporary scientific knowledge need to be addressed in school science curricula. The new features for content, pedagogy and assessment of this urgent challenge for science educators are outlined. These will be essential if the goal of science education for citizenship is to be achieved with our students, who will increasingly be required to make personal and collective decisions on issues involving science and technology.
Resumo:
The QUT Extreme Science and Engineering program provides free hands-on workshops to schools, presented by scientists and engineers to students from prep to year 12 in their own classrooms. The workshops are tied to the school curriculum and give students access to professional quality instruments, helping to stimulate their interest in science and engineering, with the aim of generating a greater take up of STEM related subjects in the senior high school years. In addition to engaging students in activities, workshop presenters provide role models of both genders, helping to breakdown preconceived ideas of the type of person who becomes a scientist or engineer and demystifying the university experience. The Extreme Science and Engineering vans have been running for 10 years and as such demonstrate a sustainable and reproducible model for schools engagement. With funding provided through QUT’s Widening Participation Equity initiative (HEPPP funded) the vans which averaged 120 school visits each year has increased to 150+ visits in 2010. Additionally 100+ workshops (hands-on and career focused) have been presented to students from low socio-economic status schools, on the three QUT campuses in 2011. While this is designed as a long-term initiative the short term results have been very promising, with 3000 students attending the workshops in the first six months and teacher and students feedback has been overwhelmingly positive.
Resumo:
Central to multi-stakeholder processes of participatory innovation is to generate knowledge about ‘users’ and to identify business opportunities accordingly. In these processes of collaborative analysis and synthesis, conflicting perceptions within and about a field of interest are likely to surface. Instead of the natural tendency to avoid these tensions, we demonstrate how tensions can be utilized by embodying them in provocative types (provotypes). Provotypes expose and embody tensions that surround a field of interest to support collaborative analysis and collaborative design explorations across stakeholders. In this paper we map how provotyping contributes to four related areas of contemporary Interaction Design practice. Through a case study that brings together stakeholders from the field of indoor climate, we provide characteristics of design provocations and design guidelines for provotypes for participatory innovation.