881 resultados para Pare to archived genetic algorithm
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.
Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology
Resumo:
Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
Hub Location Problems play vital economic roles in transportation and telecommunication networks where goods or people must be efficiently transferred from an origin to a destination point whilst direct origin-destination links are impractical. This work investigates the single allocation hub location problem, and proposes a genetic algorithm (GA) approach for it. The effectiveness of using a single-objective criterion measure for the problem is first explored. Next, a multi-objective GA employing various fitness evaluation strategies such as Pareto ranking, sum of ranks, and weighted sum strategies is presented. The effectiveness of the multi-objective GA is shown by comparison with an Integer Programming strategy, the only other multi-objective approach found in the literature for this problem. Lastly, two new crossover operators are proposed and an empirical study is done using small to large problem instances of the Civil Aeronautics Board (CAB) and Australian Post (AP) data sets.
Resumo:
Les habitudes de consommation de substances psychoactives, le stress, l’obésité et les traits cardiovasculaires associés seraient en partie reliés aux mêmes facteurs génétiques. Afin d’explorer cette hypothèse, nous avons effectué, chez 119 familles multi-générationnelles québécoises de la région du Saguenay-Lac-St-Jean, des études d’association et de liaison pangénomiques pour les composantes génétiques : de la consommation usuelle d’alcool, de tabac et de café, de la réponse au stress physique et psychologique, des traits anthropométriques reliés à l’obésité, ainsi que des mesures du rythme cardiaque (RC) et de la pression artérielle (PA). 58000 SNPs et 437 marqueurs microsatellites ont été utilisés et l’annotation fonctionnelle des gènes candidats identifiés a ensuite été réalisée. Nous avons détecté des corrélations phénotypiques significatives entre les substances psychoactives, le stress, l’obésité et les traits hémodynamiques. Par exemple, les consommateurs d’alcool et de tabac ont montré un RC significativement diminué en réponse au stress psychologique. De plus, les consommateurs de tabac avaient des PA plus basses que les non-consommateurs. Aussi, les hypertendus présentaient des RC et PA systoliques accrus en réponse au stress psychologique et un indice de masse corporelle (IMC) élevé, comparativement aux normotendus. D’autre part, l’utilisation de tabac augmenterait les taux corporels d’épinéphrine, et des niveaux élevés d’épinéphrine ont été associés à des IMC diminués. Ainsi, en accord avec les corrélations inter-phénotypiques, nous avons identifié plusieurs gènes associés/liés à la consommation de substances psychoactives, à la réponse au stress physique et psychologique, aux traits reliés à l’obésité et aux traits hémodynamiques incluant CAMK4, CNTN4, DLG2, DAG1, FHIT, GRID2, ITPR2, NOVA1, NRG3 et PRKCE. Ces gènes codent pour des protéines constituant un réseau d’interactions, impliquées dans la plasticité synaptique, et hautement exprimées dans le cerveau et ses tissus associés. De plus, l’analyse des sentiers de signalisation pour les gènes identifiés (P = 0,03) a révélé une induction de mécanismes de Potentialisation à Long Terme. Les variations des traits étudiés seraient en grande partie liées au sexe et au statut d’hypertension. Pour la consommation de tabac, nous avons noté que le degré et le sens des corrélations avec l’obésité, les traits hémodynamiques et le stress sont spécifiques au sexe et à la pression artérielle. Par exemple, si des variations ont été détectées entre les hommes fumeurs et non-fumeurs (anciens et jamais), aucune différence n’a été observée chez les femmes. Nous avons aussi identifié de nombreux traits reliés à l’obésité dont la corrélation avec la consommation de tabac apparaît essentiellement plus liée à des facteurs génétiques qu’au fait de fumer en lui-même. Pour le sexe et l’hypertension, des différences dans l’héritabilité de nombreux traits ont également été observées. En effet, des analyses génétiques sur des sous-groupes spécifiques ont révélé des gènes additionnels partageant des fonctions synaptiques : CAMK4, CNTN5, DNM3, KCNAB1 (spécifique à l’hypertension), CNTN4, DNM3, FHIT, ITPR1 and NRXN3 (spécifique au sexe). Ces gènes codent pour des protéines interagissant avec les protéines de gènes détectés dans l’analyse générale. De plus, pour les gènes des sous-groupes, les résultats des analyses des sentiers de signalisation et des profils d’expression des gènes ont montré des caractéristiques similaires à celles de l’analyse générale. La convergence substantielle entre les déterminants génétiques des substances psychoactives, du stress, de l’obésité et des traits hémodynamiques soutiennent la notion selon laquelle les variations génétiques des voies de plasticité synaptique constitueraient une interface commune avec les différences génétiques liées au sexe et à l’hypertension. Nous pensons, également, que la plasticité synaptique interviendrait dans de nombreux phénotypes complexes influencés par le mode de vie. En définitive, ces résultats indiquent que des approches basées sur des sous-groupes et des réseaux amélioreraient la compréhension de la nature polygénique des phénotypes complexes, et des processus moléculaires communs qui les définissent.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
In this paper the design issues of compact genetic microstrip antennas for mobile applications has been investigated. The antennas designed using Genetic Algorithms (GA) have an arbitrary shape and occupies less area (compact) compared to the traditionally designed antenna for the same frequency but with poor performance. An attempt has been made to improve the performance of the genetic microstrip antenna by optimizing the ground plane (GP) to have a fish bone like structure. The genetic antenna with the GP optimized is even better compared to the traditional and the genetic antenna.
Resumo:
This paper presents a Reinforcement Learning (RL) approach to economic dispatch (ED) using Radial Basis Function neural network. We formulate the ED as an N stage decision making problem. We propose a novel architecture to store Qvalues and present a learning algorithm to learn the weights of the neural network. Even though many stochastic search techniques like simulated annealing, genetic algorithm and evolutionary programming have been applied to ED, they require searching for the optimal solution for each load demand. Also they find limitation in handling stochastic cost functions. In our approach once we learn the Q-values, we can find the dispatch for any load demand. We have recently proposed a RL approach to ED. In that approach, we could find only the optimum dispatch for a set of specified discrete values of power demand. The performance of the proposed algorithm is validated by taking IEEE 6 bus system, considering transmission losses
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
In this article, techniques have been presented for faster evolution of wavelet lifting coefficients for fingerprint image compression (FIC). In addition to increasing the computational speed by 81.35%, the coefficients performed much better than the reported coefficients in literature. Generally, full-size images are used for evolving wavelet coefficients, which is time consuming. To overcome this, in this work, wavelets were evolved with resized, cropped, resized-average and cropped-average images. On comparing the peak- signal-to-noise-ratios (PSNR) offered by the evolved wavelets, it was found that the cropped images excelled the resized images and is in par with the results reported till date. Wavelet lifting coefficients evolved from an average of four 256 256 centre-cropped images took less than 1/5th the evolution time reported in literature. It produced an improvement of 1.009 dB in average PSNR. Improvement in average PSNR was observed for other compression ratios (CR) and degraded images as well. The proposed technique gave better PSNR for various bit rates, with set partitioning in hierarchical trees (SPIHT) coder. These coefficients performed well with other fingerprint databases as well.
Resumo:
In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
We have designed a highly parallel design for a simple genetic algorithm using a pipeline of systolic arrays. The systolic design provides high throughput and unidirectional pipelining by exploiting the implicit parallelism in the genetic operators. The design is significant because, unlike other hardware genetic algorithms, it is independent of both the fitness function and the particular chromosome length used in a problem. We have designed and simulated a version of the mutation array using Xilinix FPGA tools to investigate the feasibility of hardware implementation. A simple 5-chromosome mutation array occupies 195 CLBs and is capable of performing more than one million mutations per second. I. Introduction Genetic algorithms (GAs) are established search and optimization techniques which have been applied to a range of engineering and applied problems with considerable success [1]. They operate by maintaining a population of trial solutions encoded, using a suitable encoding scheme.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
Controllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.