995 resultados para PULMONARY RESPONSES
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.
Resumo:
Recognizing the differences and similarities at pathological level in both diseases may lead to a better understanding of the overlapping clinical and physiological phenotypes, thereby helping to better plan specific treatment and long-term management.
Resumo:
Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.
Resumo:
Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Up to 60% of chronic obstructive pulmonary disease ( COPD) patients can present airway hyperresponsiveness. However, it is not known whether the peripheral lung tissue also shows an exaggerated response to agonists in COPD. Objectives: To investigate the in vitro mechanical behavior and the structural and inflammatory changes of peripheral lung tissue in COPD patients and compare to nonsmoking controls. Methods: We measured resistance and elastance at baseline and after acetylcholine (ACh) challenge of lung strips obtained from 10 COPD patients and 10 control subjects. We also assessed the alveolar tissue density of neutrophils, eosinophils, macrophages, mast cells and CD8+ and CD4+ cells, as well as the content of alpha-smooth muscle actin-positive cells and elastic and collagen fibers. We further investigated whether changes in in vitro parenchymal mechanics correlated to structural and inflammatory parameters and to in vivo pulmonary function. Results: Values of resistance after ACh treatment and the percent increase in tissue resistance (%R) were higher in the COPD group (p <= 0.03). There was a higher density of macrophages and CD8+ cells (p < 0.05) and a lower elastic content (p = 0.003) in the COPD group. We observed a positive correlation between %R and eosinophil and CD8+ cell density (r = 0.608, p = 0.002, and r = 0.581, p = 0.001, respectively) and a negative correlation between %R and the ratio of forced expiratory volume in 1 s to forced vital capacity (r = -0.451, p < 0.05). Conclusions: The cholinergic responsiveness of parenchymal lung strips is increased in COPD patients and seems to be related to alveolar tissue eosinophilic and CD8 lymphocytic inflammation and to the degree of airway obstruction on the pulmonary function test. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses, as measured by the breadth of the Gag peptide-specific IFN-gamma, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric IAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Along the aluminum refining process, alumina (Al(2)O(3)) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH(2)O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH(2)O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH(2)O), and total resistive pressure (2.21 +/- 0.49 cmH(2)O) than CTRL (27.95 +/- 3.63 cmH(2)O/mL, 6.12 +/- 0.99 cmH(2)O/mL, 1.23 +/- 0.19 cmH(2)O, and 1.68 +/- 0.23 cmH(2)O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.
Resumo:
Toxoplasma gondii is an obligate intracellular parasite that infects a variety of mammals and birds. T. gondii also causes human toxoplasmosis; although toxoplasmosis is generally a benign disease, ocular, congenital or reactivated disease is associated with high numbers of disabled people. Infection occurs orally through the ingestion of meat containing cysts or by the intake of food or water contaminated with oocysts. Although the immune system responds to acute infection and mediates the clearance of tachyzoites, parasite cysts persist for the lifetime of the host in tissues such as the eye, muscle, and CNS. However, T. gondii RH strain tachyzoites irradiated with 255 Gy do not cause residual infection and induce the same immunity as a natural infection. To assess the humoral response in BALB/c and C57BL/6J mice immunized with irradiated tachyzoites either by oral gavage (p.o.) or intraperitoneal (i.p.) injection, we analyzed total and high-affinity IgG and IgA antibodies in the serum. High levels of antigen-specific IgG were detected in the serum of parenterally immunized mice, with lower levels in mice immunized via the oral route. However, most serum antibodies exhibited low affinity for antigen in both mice strain. We also found antigen specific IgA antibodies in the stools of the mice, especially in orally immunized BALB/c mice. Examination of bone marrow and spleen cells demonstrated that both groups of immunized mice clearly produced specific lgG, at levels comparable to chronic infection, suggesting the generation of IgG specific memory. Next, we challenged i.p. or p.o. immunized mice with cysts from ME49. VEG or P strains of T. gondii. Oral immunization resulted in partial protection as compared to challenged naive mice: these findings were more evident in highly pathogenic ME49 strain challenge. Additionally, we found that while mucosal IgA was important for protection against infection, antigen-specific IgG antibodies were involved with protection against disease and disease pathogenesis. Most antigen responsive cells in culture produced specific high-affinity IgG after immunization, diverse of the findings in serum IgG or from cells after infection, which produced low proportion of high-avidity IgG. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gemcitabine is a chemotherapy agent that may cause unpredictable side effects. In this report, we describe a fatal gemcitabine-induced pulmonary toxicity in a patient with gallbladder metastatic adenocarcinoma. A 72-year-old patient was submitted to an elective laparoscopic cholecystectomy, and a tubular adenocarcinoma in the gallbladder was incidentally diagnosed. CT scan and ultrasound before the surgery did not show any tumor. After the surgery a Pet scan was positive for a hot-spot in the left colon. The colonic lesion was conveniently removed and the histology evaluation confirmed the diagnosis of adenocarcinoma tubular. The patient was then submitted to three sections of 1,600 mg/m(2) of gemcitabine with intervals of 1 week. Three weeks later he developed severe respiratory distress. A helicoidal CT scan showed diffuse and severe interstitial pneumonitis, and lung biopsy confirmed accelerated usual interstitial pneumonia consistent with drug-induced toxicity. The patient presented unfavorable evolution with progressive worsening of respiratory function, hypotension, and renal failure. He died 1 month later in spite of methylprednisolone pulse therapy, large spectrum antimicrobial therapy, and full support of respiratory, hemodynamic and renal systems. Gemcitabine-induced pulmonary toxicity is usually a dramatic condition. Physicians should suspect pulmonary toxicity in patients with respiratory distress after gemcitabine chemotherapy, mainly in elderly patients.
Resumo:
Background Collagen V shows promise as an inducer of interstitial lung fibrosis in experimental systemic sclerosis (SSc). Materials and methods Remodelling of the pulmonary interstitium was evaluated based on the clinical data and open lung biopsies from 15 patients with SSc. Normal lung tissues obtained from eight individuals who died of traumatic injuries were used as control group. Immunofluorescence, immunohistochemistry, morphometry, tri-dimensional reconstruction and a real-time polymerase chain reaction were used to evaluate the quantity, structure and molecular chains of collagen V. The impact of these markers was tested on clinical data. Results The main difference in collagen V content between SSc patients and the control group was an increased, abnormal and distorted fibre deposition in the alveolar septa and the pre-acinar artery wall. The lungs from SSc patients presented [alpha 1(V)] and [alpha 2(V)] mRNA chain expression increased, but [alpha 2(V)] was proportionally increased compared with the control group. High levels of collagen V were inversely associated with vital capacity (r = -0.72; P = 0.002), forced vital capacity (r = -0.76; P < 0.001), forced expiratory volume in 1-s (r = -0.89; P < 0.001) and diffusing capacity for carbon monoxide (r = -0.62; P = 0.04). Conclusions Abnormal collagen V fibres are overproduced in lungs from SSc patients and may play an important role in the pathogenesis of the disease as this molecule regulates tissue collagen assembly. The aberrant histoarchitecture observed in SSc can be related to the overexpression of the [alpha 2(V)] gene of unknown origin.
Resumo:
RAMOS, D. S. C. R. OLIVO. F. D. QUIRINO SANTOS LOPES, A. C. TOLEDO, M. A. MARTINS, R. A. LAZO OSORIO. M. DOLHNIKOFF, W. RIBEIRO, and R. R VIEIRA. Low-Intensity Swimming Training Partially Inhibits Lipopolysaccharide-Induced Acute Lung Injury. Med. Sci. Sports Exerc.. Vol. 42, No. 1, pp. 113-119, 2010. Background: Aerobic exercise-decreases pulmonary inflammation and remodeling in experimental models of allergic asthma. However, the effects of aerobic exercise oil pulmonary inflammation of nonallergic Origin, such as in experimental models of acute long injury induced by lipopolysaccharide (LPS), have not been evaluated. Objective: The present study evaluated file effects of aerobic exercise in a model of LPS-induced acute lung injury. Methods: BALB/c mice were divided into four groups: Control, Aerobic Exercise, LPS, and Aerobic Exercise + LPS. Swimming tests were conducted at baseline and at 3 and 6 wk. Low-Intensity swimming training was performed for 6 wk, four times per week, 60 min per session. Intranasal LPS (1 mg.kg(-1) (60 mu g per mouse)) was instilled 24 It after the last swimming physical test in the LPS and Aerobic Exercise + LPS mice, and the animals were studied 24 It after LPS instillation. Exhaled nitric oxide, respiratory mechanics, total and differential cell Counts in bronchoalveolar lavage, and lung parenchymal inflammation and remodeling were evaluated. Results: LPS instillation resulted in increased levels of exhaled nitric oxide (P < 0.001), higher numbers of neutrophils in file bronchoalveolar lavage (P < 0.001) and in the lung parenchyma (P < 0.001), and decreased lung tissue resistance (P < 0.05) and volume proportion of elastic fibers (P < 0.01) compared with the Control group. Swim training in LPS-instilled animals resulted in significantly lower exhaled nitric oxide levels (P < 0.001) and fewer nelltrophils in the bronchoalveolar lavage (P < 0.001) and the lung parenchyma (P < 0.01) compared with the LPS group. Conclusions: These results Suggest that low-intensity swimming training inhibits lung neutrophilic inflammation, but not remodeling and impaired lung mechanics, in a model of LPS-induced acute lung injury.
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
P>Background To date, little information has been available about pulmonary artery pathology in asthma. The pulmonary artery supplies the distal parts of the lungs and likely represents a site of immunological reaction in allergic inflammation. The objective of this study was to describe the inflammatory cell phenotype of pulmonary artery adventitial inflammation in lung tissue from patients who died of asthma. Methods We quantified the different inflammatory cell types in the periarterial region of small pulmonary arteries in lung tissue from 22 patients who died of asthma [fatal asthma (FA)] and 10 control subjects. Using immunohistochemistry and image analysis, we quantified the cell density for T lymphocytes (CD3, CD4, CD8), B lymphocytes (CD20), eosinophils, mast cells (chymase and tryptase), and neutrophils in the adventitial layer of pulmonary arteries with a diameter smaller than 500 mu m. Results Our data (median/interquartile range) demonstrated increased cell density of mast cells [FA=271.8 (148.7) cells/mm