917 resultados para PHASE-SPACE APPROACH
Resumo:
We study the dynamics of Bose-Einstein condensates in symmetric double-well potentials following a sudden change of the potential from the Mott-insulator to the superfluid regime. We introduce a continuum approximation that maps that problem onto the wave-packet dynamics of a particle in an anharmonic effective potential. For repulsive two-body interactions the visibility of interference fringes that result from the superposition of the two condensates following a stage of ballistic expansion exhibits a collapse of coherent oscillations onto a background value whose magnitude depends on the amount of squeezing of the initial state. Strong attractive interactions are found to stabilize the relative number dynamics. We visualize the dynamics of the system in phase space using a quasiprobability distribution that allows for an intuitive interpretation of the various types of dynamics.
Resumo:
This thesis has three chapters. Chapter 1 explores literature about exchange rate pass-through, approaching both empirical and theoretical issues. In Chapter 2, we formulate an estate space model for the estimation of the exchange rate pass-through of the Brazilian Real against the US Dollar, using monthly data from August 1999 to August 2008. The state space approach allows us to verify some empirical aspects presented by economic literature, such as coe cients inconstancy. The estimates o ffer evidence that the pass-through had variation over the observed sample. The state space approach is also used to test whether some of the "determinants" of pass-through are related to the exchange rate pass-through variations observed. According to our estimates, the variance of the exchange rate pass-through, monetary policy and trade ow have infuence on the exchange rate pass-through. The third and last chapter proposes the construction of a coincident and leading indicator of economic activity in the United States of America. These indicators are built using a probit state space model to incorporate the deliberations of the NBER Dating Cycles Committee regarding the state of the economy in the construction of the indexes. The estimates o ffer evidence that the NBER Committee weighs the coincident series (employees in nonagricultural payrolls, industrial production, personal income less transferences and sales) di fferently way over time and between recessions. We also had evidence that the number of employees in nonagricultural payrolls is the most important coincident series used by the NBER to de fine the periods of recession in the United States.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence of the formal solution of the equations defining the components of the symplectic form in this framework. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.
Resumo:
We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of Poincare surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications for intermittency are also discussed.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We develop a model for spiral galaxies based on a nonlinear realization of the Newtonian dynamics starting from the momentum and mass conservations in the phase space. The radial solution exhibits a rotation curve in qualitative accordance with the observational data.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.