972 resultados para Osteoclast precursors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium titanate is used extensively as a dielectric in ceramic capacitors, particularly due to its high dielectric constant and low dielectric loss characteristics. It can be made semiconducting by addition of certain dopants and by proper modification of grains and grain boundary properties obtaining very interesting characteristics for various applications. The synthesis method and sintering regime have a strong influence on properties of obtained barium titanate ceramics. Doped barium titanate was prepared with Nb+5 and Y+3 ions as donor dopants, and with Mn+2 ions as acceptor dopant by polymeric precursors method. By this procedure nanosized powders were obtained after calcination. Sintering was performed in the temperature range of 1290°C to 1380°C The microstructure of doped BaTiO3 was performed using scanning electron microscopy. The influence of dopants and sintering temperature on grain size was analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NO x and non-methane volatile organic compounds) and HO x in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NO x up to 2 ppbv in the 7-17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7-17km layer by dynamical effects. During daytime in the presence of lightning NO x, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NO x also impacts on the oxydizing capacity of the upper troposphere by reducing on average HO x, HO 2, H 2O 2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HO x in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wollastonite bioceramics prepared from synthetic and natural precursors were implanted in rats in bone and subcutaneous tissues. The implant sites were excised after 7, 30 and 120 days, fixed, dehydrated, embedded in paraffin wax for serial cutting and examined under transmitted light microscope. It was found a very similar behavior for both wollastonite bioceramics. They were biocompatible, bioactive and biodegradable when implanted in rat bone. The synthetic ceramic was more reabsorbable than the one from natural powder. When implanted in subcutaneous rat tissue, both materials elicited a mild initial inflammatory reaction that practically disappeared after 120 days. Both materials were encapsulated with a very thin fibrous capsule and slightly reabsorbed at their surfaces. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the preparation and characterization of Zn 0.95Mn0.05O phase obtained by the polymeric precursor method for DMS applications. The as-obtained powders were calcined between 500 to 800°C and characterized by XRD, SEM and BET. The XRD analysis of the powder showed a crystalline material containing second phase. The crystallite sizes ranged from 20 to 51 nm. The micrographs showed that the powders consisted of soft and homogeneous agglomerations. The nitrogen adsorption/desorption curves of the Zn0.95Mn0.05O phases were type II curves, which is characteristic of mesoporous materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement. © 2013 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MW). The role of MW for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MW knockout mice (MIF-/-) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF-/- mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-alpha production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to characterize the formation and progression of experimentally induced periapical lesions in TLR2 knockout (TLR2 KO) mice. Methods: Periapical lesions were induced in molars of 28 wild type (WT) and 27 TLR2 KO mice. After 7, 21, and 42 days, the animals were euthanized, and the mandibles were subjected to histotechnical processing. Hematoxylin-eosin-stained sections were examined under conventional light microscopy for the description of pulpal, apical, and periapical features and under fluorescence microscopy for the determination of the periapical lesion size. The subsequent sections were evaluated by tartrate resistant acid phosphatase histoenzymology (osteoclasts), Brown and Brenn staining (bacteria), and immunohistochemistry (RANK, RANKL, and OPG). Data were analyzed by the Mann-Whitney U and Kruskal-Wallis tests (alpha = 0.05), Results: The WT group showed significant differences (P < .05) in the periapical lesion size and the osteoclast number between 7 and 42 days and between 21 and 42 days. In the TLR2 KO group, significant differences (P < .05) in the periapical lesion size and the osteoclast number were found between 7 days and the other periods. There was a significant difference (P < .05) between the 2 types of animal regarding the periapical lesion size, which was larger in the TLR2 KO animals. No significant differences (P > .05) were found between WT and TLR2 KO mice related to the pulpal, apical, and periapical features; bacteria localization; and immunohistochemical results (except for RANK expression). Conclusions: TLR2 KO animals developed larger periapical lesions with a greater number of osteoclasts, indicating the important role of this receptor in the host's immune and inflammatory response to root canal and periradicular infection. (J Endod 2012;38:803-813)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.