983 resultados para Olin R. Thompson


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parsons' Diseases of the Eye, first published in 1907, is one of the foundation texts of modern ophthalmology. It has seen a new edition at approximately 5-year intervals throughout the century. This latest edition incorporates developments that have taken place within the specialty since the 1984 impression, but remains in a virtually unchanged format...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is part of a series of chemical investigations of the genus Grevillea. Two new arbutin derivatives, seven new bisresorcinols, including a mixture of two isomers, three known flavonol glycosides, and four known resorcinols, including a mixture of two homologous compounds, were isolated from the ethyl acetate extract of the leaves and methanol extract of the stems of Grevillea banksii. The new compounds were identified, on the basis of spectroscopic data, as 6'-O-(3-(2(hydroxymethyl)acryloyloxy)-2-methylpropanoyl)arbutin (1), 6'-O-(2-methylacryloyl)arbutin (2), 5,5'-(4(Z)-dodecen-1,12diyl)bisresorcinol (6), 2'-methyl-5,5'-(4(Z)-tetradecen-1,14-diyl)bisresorcinol (8), 2,2'-di(4-hydroxyprenyl)-5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (9), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl) 5,5'-(6(Z)-tetradecen-1,14-diyl)bisresorcinol (10), 2-(4-acetoxyprenyl)-2'-(4-hydroxyprenyl)5,5'-(8(Z)-tetradecen-l,14-diyl)bisresorcinol (11), 5,5'-(10(Z)-tetradecen-1-on-diyl)bisresorcinol (12) and 5,5'-(4(Z)-tetradecen-1-on-diyl)bisresorcinol (13).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium-signaling pathways controlling EMT induction in cancer cells may therefore be an important therapeutic strategy for preventing metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 80% of women diagnosed with advanced-stage ovarian cancer die as a result of disease recurrence due to failure of chemotherapy treatment. In this study, using two distinct ovarian cancer cell lines (epithelial OVCA 433 and mesenchymal HEY) we demonstrate enrichment in a population of cells with high expression of CSC markers at the protein and mRNA levels in response to cisplatin, paclitaxel and the combination of both. We also demonstrate a significant enhancement in the sphere forming abilities of ovarian cancer cells in response to chemotherapy drugs. The results of these in vitro findings are supported by in vivo mouse xenograft models in which intraperitoneal transplantation of cisplatin or paclitaxel-treated residual HEY cells generated significantly higher tumor burden compared to control untreated cells. Both the treated and untreated cells infiltrated the organs of the abdominal cavity. In addition, immunohistochemical studies on mouse tumors injected with cisplatin or paclitaxel treated residual cells displayed higher staining for the proliferative antigen Ki67, oncogeneic CA125, epithelial E-cadherin as well as cancer stem cell markers such as Oct4 and CD117, compared to mice injected with control untreated cells. These results suggest that a short-term single treatment of chemotherapy leaves residual cells that are enriched in CSC-like traits, resulting in an increased metastatic potential. The novel findings in this study are important in understanding the early molecular mechanisms by which chemoresistance and subsequent relapse may be triggered after the first line of chemotherapy treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue remodeling is a key process involved in normal development, wound healing, bone remodeling, and embryonic implantation, as well as pathological conditions such as tumor invasion and metastasis, and angiogenesis. The degradation of the extracellular matrix that is associated with those processes is mediated by a number of families of extracellular proteinases. These families include the serine proteinases, such as the plasminogen-urokinase plasminogen activator system and leukocyte elastases, the cysteine proteinases, like cathepsin D and L, and the zinc-dependent matrix metalloproteinases (MMPs). Accumulating evidence has highlighted the central role of MMP-driven extracellular matrix remodeling in mammary gland development and breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have established and characterized a series of variant cell lines in which to identify the critical factors associated with E2-induced malignant progression, and the acquisition to tamoxifen resistance in human breast cancer. Sublines of the hormone-dependent MCF-7 cell line (MCF7/MIII and MCF7/LCC1) form stable, invasive, estrogen independent tumors in the mammary fat pads of ovariectomized athymic nude mice. These cells retain expression of both estrogen (ER) and progesterone receptors (PGR), but retain sensitivity to each of the major structural classes of antiestrogens. The tamoxifen-resistant MCF7/LCC2 cells retain sensitivity to the inhibitory effects of the steroidal antiestrogen ICI 182780. By comparing the parental hormone-dependent and variant hormone-independent cells, we have demonstrated an altered expression of some estrogen regulated genes (PGR, pS2, cathepsin D) in the hormone-independent variants. Other genes remain normally estrogen regulated (ER, laminin receptor, EGF-receptor). These data strongly implicate the altered regulation of a specific subset or network of estrogen regulated genes in the malignant progression of human breast cancer. Some of the primary response genes in this network may exhibit dose-response and induction kinetics similar to pS2, which is constitutively upregulated in the MCF7/MIII, MCF7/LCC1 and MCF7/LCC2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade we have come to understand that the growth of cancer cells in general and of breast cancer in particular depends, in many cases, upon growth factors that will bind to and activate their receptors. One of these growth factor receptors is the erbB-2 protein which plays an important role in the prognosis of breast cancer and is overexpressed in nearly 30% of human breast cancer patients. While evidence accumulates to support the relationship between erbB-2 overexpression and poor overall survival in breast cancer, understanding of the biological consequence(s) of erbB-2 overexpression remains elusive. Our recent discovery of the gp30 has allowed us to identify a number of related but distinct biological endpoints which appear responsive to signal transduction through the erbB-2 receptor. These endpoints of growth, invasiveness, and differentiation have clear implications for the emergence, maintenance and/or control of malignancy, and represent established endpoints in the assessment of malignant progression in breast cancer. We have shown that gp30 induces a biphasic growth effect on cells with erbB-2 over-expression. We have recently determined the protein sequence of gp30 and cloned its full length cDNA sequence. We have also cloned two additional forms to the ligand, that are believed to be different isoforms. We are currently expressing the different forms in order to determine their biological effects. To elucidate the cellular mechanisms underlying cell growth inhibition by gp30, we tested the effect of this ligand on cell growth and differentiation of the human breast cancer cells which overexpress erbB-2 and cells which express low levels of this protooncogene. High concentrations of ligand induced differentiation of cells overexpressing erbB-2, as measured by inhibition of cell growth, and increased synthesis of milk components, and modulation of E-cadherin and up- regulation of c-jun and c-fos. These findings indicate that ligand-induced growth inhibition in cells overexpressing erbB-2 is associated with an apparent induction of differentiation. The availability of gp30 derived synthetic peptides and its full cDNAs provides tools necessary to acquire a better understanding of the mechanism of action of the this ligands and the erbB-2 receptor in breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinase-2 (MMP-2), a zymogen requiring proteolytic activation for catalytic activity, has been implicated broadly in the invasion and metastasis of many cancer model systems, including human breast cancer (HBC). MMP-2 has been immunolocalized to carcinomatous human breast, where the degree of activation of MMP-2 correlates well with tumor grade and patient prognosis. Using Matrigel assays, we have stratified HBC cell lines for invasiveness in vitro, and compared this to their potential for metastatic spread in nude mice. HBC cell lines expressing the mesenchymal marker protein vimentin were found to be highly invasive in vitro, and tended to form metastases in nude mice. We have further discovered that culture on collagen-I gels (Vitrogen(TM): Vg) induces MMP-2-activator in highly invasive but not poorly invasive HBC cell lines. As seen for other MMP-2-activator inducing regimens, this induction requires protein synthesis and an intact MMP-2 hemopexin-like domain, appears to be mediated by a cell surface activity, and can be inhibited by metalloproteinase inhibitors. The induction is highly specific to collagen I, and is not seen with thin coatings of collagen I, collagen IV, laminin, or fibronectin, or with 3-dimensional gels of laminin, Matrigel, or gelatin. This review focuses on collagen I and MMP- 2, their localization and source in HBC, and their relationship(s) to MMP-2 activation and HBC metastasis. The relevance of collagen I in activation of MMP-2 in vivo is discussed in terms of stromal cell: tumor cell interaction for collagen I deposition, MMP-2 production and MMP-2-activation. Such cooperativity may exist in vivo for MMP-2 participation in HBC dissemination. A more complete understanding of the regulation of MMP-2-activator by type I collagen may provide new avenues for improved diagnosis and prognosis of human breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter, we examine the psychological impact that organisational citizenship behaviours (OCBs) have on individuals performing them. OCB is discretionary employee behaviour that is not systematically rewarded by employers, but that contributes to overall organisational effectiveness (Organ, 1988). In a sample of schoolteachers, we predicted that performing OCBs would differentially impact two dimensions of psychological burnout -personal accomplishment (PA} and emotional exhaustion (EE). Due to the volitional nature of OCB, there are theoretical reasons to suppose that OCB enhances PA. However, it is also possible that certain OCBs constitute increased workload, thereby contributing to a heightened sense of EE. In addition, given prior research showing that non-material rewards such as praise and recognition, lead to positive employee outcomes, we proposed that praise and recognition would strengthen the relationship between OCB and PA, and weaken the relationship between OCB and EE.